logo
Методика прогноза лесной пожарной опасности

1.1. Детерминированно-вероятностная модель прогноза катастроф

В настоящее время для прогноза катастроф широко применяется метод математического моделирования с использованием электронных вычислительных машин.

При математическом моделировании используются следующие типы математических моделей катастроф:

1) детерминированные;

2) вероятностные;

3) смешанные (детерминированно-вероятностные);

4) имитационные;

Согласно [5] наиболее эффективным инструментом познания катастроф являются детерминированные математические модели.

Детерминированной математической моделью физико-химического явления называется совокупность дифференциальных, интегральных, интегро-дифференциальных, трансцендентных и алгебраических уравнений, а также соответствующих граничных и начальных условий, которые адекватно описывают движение, деформацию и разрушение тел и поля физических величин (скорость, давление, плотность, температура, концентрация) для исследуемого катастрофического явления. Иными словами, каждая детерминированная математическая модель может рассматриваться как конкретная задача математической физики.

Наиболее плодотворно исследование различных проблем естествознания, в том числе и задач теории катастроф, с помощью смешанных математических моделей. Здесь необходимо отметить то, что если рассматриваются задачи о моделировании глобальных или региональных катастроф, например возникновения лесных пожаров, то вероятностный анализ этих проблем должен предшествовать использованию детерминированных математических моделей. Иными словами, результаты математического моделирования должны быть получены в режиме, опережающем время возникновения и развития катастроф.

Далее остановимся на одной из таких моделей, которая позволяет с определенной точностью осуществлять прогнозирование лесной пожарной опасности и обоснованность которой была доказана в результате ретроспективной проверки. Речь идет о детерминированно-вероятностной методике, предложенной на кафедре физической и вычислительной механики Томского государственного университета.

В работах [5-7] утверждается, что возникновение лесного пожара носит вероятностный характер и зависит не только от погодных условий и грозовой активности, но и от уровня антропогенной нагрузки, скорости ветра, влагосодержания растительных горючих материалов и реакционной способности этих материалов. В работе [5] предложена общая схема возникновения лесных пожаров

Рис.1. Схема возникновения лесного пожара.

Из схемы Рис.1. видно, что под действием осадков и при высушивании слоя растительных горючих материалов, достигается такое состояние РГМ, при котором влагосодержание слоя становится меньше критического значения. Именно в этом случае под воздействием сухих гроз, а также под воздействием антропогенной нагрузки происходит воспламенение растительных горючих материалов и возникает низовой лесной пожар.

Все эти факторы были учтены в предложенной детерминированно-вероятностной методике.

Далее возникает сложность в определении основного проводника горения. Считается, что для каждого индивидуального участка леса должен быть установлен свой основной проводник горения (ОПГ), но на практике имеет место огромное разнообразие образующихся смесей из растительных горючих материалов. Эта смесь может иметь признаки двух, трех и даже четырех ОПГ. Кроме того, при определении типов ОПГ необходимо учесть их сезонную динамику.

Следуя [6] вначале было выбрано 5 ОПГ для рассматриваемого участка леса: опад хвои, мох, лишайник, опад листвы и травяную ветошь. Исходя из этого было записано условие невозгорания слоя РГМ:

Здесь верхний индекс k как раз соответствует проводнику горения (ОПГ), в левой части неравенства находится текущее влагосодержание k-го ОПГ на i-м выделе в j-й временной интервал, в правой части - критическое влагосодержание k-го основного проводника горения на i-м выделе, при котором ОПГ не воспламеняется и лесной пожар не возникает.

Далее, после применения теории вероятностей и физических соображений, была получена следующая формула (динамическая модель) для оценки вероятности возникновения лесного пожара для j-го временного интервала лесопожарного сезона на i-й лесной территории [5-7]:

Здесь Pij - вероятность возникновения лесного пожара для j-го интервала (шага по времени) на i-й контролируемой лесной территории; Pi(А) - вероятность антропогенной нагрузки; Pi(ЛП/А) - вероятность возникновения пожара вследствие антропогенной нагрузки на площади Fi; Pi(М) - вероятность возникновения сухих гроз на площади Fi; Pi(ЛП/М) - вероятность возникновения лесного пожара от молнии при условии, что сухие грозы могут иметь место на площади Fi; Pij(C) - вероятность того, что влагосодержание слоя РГМ будет меньше критического (вероятность возникновения пожара по метеоусловиям).

При выводе формулы (4) было сделано допущение о том, что лесопожарное созревание на каждом выделе контролируемой лесной территории проходит независимо друг от друга и определяется только параметрами, характеризующими данный выдел.

Величина Pij(C) для лесопожарного сезона определяется следующим образом:

Здесь n - это эмпирический показатель степени, характеризующий количественное изменение пожарной опасности.

Величины Pi(А), Pi(ЛП/А), Pi(М), Pi(ЛП/М) можно найти, используя известное определение вероятности события через соответствующие частоты (статистическая модель риска)

Здесь NАi и NПАi - количество дней пожароопасных сезонов для i-го выдела, когда имеется антропогенная нагрузка, достаточная для зажигания РГМ и количество пожаров вследствие этой нагрузки, включая и умышленные поджоги за период с 2000 по 2004 год; NКПi - общее количество пожаров для i-го выдела за пять лет с 2000 по 2004 год; NМi и NПСi - число дней для i-го выдела, когда имели место молнии (при сухих грозах) и общее число дней пожароопасных сезонов для i-го выдела за период с 2000 по 2004 год; NПМi - количество пожаров от молний при сухих грозах за пять лет с 2000 по 2004 год.