Вопрос 2. Повреждения в результате температурных воздействий
Повреждение технологического производственного оборудования может произойти в результате образования не предусмотренных расчетом температурных перенапряжений в материале стенок аппаратов и трубопроводов, а также в результате ухудшения механических характеристик металлов при низких или высоких температурах.
Температурные перенапряжения в материале, из которого изготовлены аппараты и трубопроводы, наступают тогда, когда есть препятствия линейному изменению отдельных элементов (узлов) или конструкции в целом.
Если аппарат (трубопровод) при изменении температуры свободно меняет свои размеры, то повреждения не произойдет. При этом изменение длины будет равно (слайд 24):
,
где ∆l - изменение длины, м;
αt- коэффициент линейного расширения, 1/град;
∆t - изменение температуры, град;
l - длина конструкции, м.
Температурные напряжения наблюдаются (слайд 25):
при жестком креплении трубопроводов,
при наличии в аппаратах биметаллических конструкции или конструктивных элементов, находящихся под воздействием неодинаковых температур,
в толстостенных конструкциях
при местных изменениях температур в материале аппарата.
Высокое температурное напряжение в материале труб, если не принять мер к его устранению, может разрушить трубопровод, арматуру, опоры и нанести повреждение оборудованию (насосам, фильтрам и т. п.) и резервуарам.
Мероприятия
Разгрузка трубопроводов от температурных напряжений осуществляется установкой температурных компенсаторов. Компенсаторы применяют линзовые, гнутые (П-образные, лирообразные и др.) (слайд 26, 27) и сальниковые.
В толстостенных аппаратах, работающих при повышенной или пониженной температурах, степень нагретости внутренней и наружной поверхностей стенки различна. Температурный перепад по толщине стенки, как и неодинаковый нагрев отдельных участков, особенно при резком изменении рабочих температур, может вызвать опасные по величине температурные напряжения. По этой причине неоднократно происходили повреждения аппаратов и серьезные аварии.
Так, на химическом комбинате колонна синтеза изобутилового спирта работала под давлением 32 МПа при температуре в зоне катализатора 470° С. Корпус колонны представлял собой стальную трубу толщиной 30 мм, усиленную четырьмя рядами намотанной на нее профилированной стальной лепты. Суммарная толщина стенки составляла 126 мм. Незадолго до аварии температура в зоне катализатора резко повысилась и в течение 5 мин превышала 600° С. Произошел разрыв корпуса колонны. Силой взрыва была разрушена железобетонная кабина. Съемные железобетонные щиты весом 5 т, закрывающие при работе агрегата монтажный проем в стене кабины, были отброшены на 140 м. Причиной аварии послужил увеличенный перепад температур между внутренней и наружной стенками колонны. По данным отраслевого научно-исследовательского института азотной промышленности при установившемся температурном режиме таких колонн нормальный температурный перепад не должен превышать 15...20° С, а в данном случае он составил более 45° С. Было установлено, что при такой толщине стенок разность температур между внутренней и наружной поверхностями стенки корпуса в один градус уже вызывает напряжение сжатия (на внутренней поверхности) и растяжения (на наружной) до 1,8...2,0 МПа. Естественно, что напряжение в материале стенки превысило опасный предел.
При поверочных расчетах толстостенных конструкций температуру наружной и внутренней поверхностей стенки принимают исходя из максимально возможного перепада температур как в процессе работы, так и в периоды пуска и остановки аппарата.
Для предупреждения аварий толстостенных аппаратов от температурных воздействий, строго поддерживают заданный температурный режим работы, используют автоматические регуляторы температуры, устанавливают регистрирующие приборы с сигнальными устройствами для замера температуры стенок корпуса, производят охлаждение внутренней поверхности стенок аппарата путем пропускания холодного циркуляционного газа. При повышении температуры наружной или внутренней поверхностей стенок аппарата сверх установленной величины автоматически снижают давление и температурный режим аппарата, принимают меры к остановке всего технологического процесса.
Для уменьшения разности температур между внутренней и наружной поверхностями стенок аппарата и снижения влияния температуры внешней среды наружные поверхности толстостенных аппаратов и трубопроводов защищают теплоизоляцией. Во избежание температурных перенапряжений следует очень медленно нагревать и охлаждать толстостенные аппараты в период их пуска и остановки, не допускать нарушения установленного темпа изменения температуры во времени.
Длительное воздействие высоких температур на материал, из которого изготовлены технологические аппараты, приводит к появлению медленных пластических деформаций в этих аппаратах даже в тех случаях, когда напряжение от рабочих нагрузок не превышает предела текучести (при данной температуре). Такое явление носит название ползучести (крипа). Особенно существенные изменения в условиях длительной работы под нагрузкой при высокой температуре претерпевают углеродистые стали. Легированные и жаропрочные стали при действии высоких температур изменяют свои механические свойства незначительно.
Воздействие высоких температур на материал аппаратов возникает при ококсовании и загрязнении их теплообменной поверхности, при снижении в них уровня жидкости, в результате повреждения защитной футеровки. Подобные явления называют прогаром стенок.
Повреждение технологического оборудования может наступить в результате воздействия не только высоких, но и низких температур. При низких температурах работают холодильные установки (аммиачные, пропановые и др.), установки газофракционирования (при температуре минус 30" С и ниже); установки по производству жидкого воздуха, кислорода и азота (при температуре минус 180° С и ниже), а также установки, находящиеся на открытых площадках в районах Урала, Сибири и Крайнего Севера. В этих условиях эксплуатации оборудования возникает опасное явление хладоломкости стали, связанное с падением ударной вязкости.
Ударная вязкость углеродистых сталей резко (скачкообразно) падает при снижении температуры. Потеря ударной вязкости может привести к образованию трещин, а иногда к полному разрушению аппаратов из этих сталей даже при действии нормальных рабочих нагрузок.
С увеличением количества углерода и фосфора в стали хрупкость ее увеличивается. Анализ происшедших повреждений аппаратов показал, что почти во всех случаях имело место сочетание нескольких причин: хрупкость металла при низких температурах, жесткость конструкций (особенно сварных), значительные внутренние перенапряжения в отдельных узлах, появляющиеся под влиянием дополнительных факторов — перепада температуры, действия ветра, динамичности нагрузок и т. п.
При эксплуатации технологических аппаратов в условиях низких температур чаще всего наблюдаются случаи повреждения резервуаров и емкостей с легковоспламеняющимися и горючими жидкостями, а также со сжиженными газами, причем почти все случаи полного разрушения аппаратов происходят по одной и той же схеме: разрушается наиболее нагруженный конструктивный элемент — корпус резервуара, заполненный продуктом. Разрушается он по ломаной линии на полную высоту стенки, а затем в результате радиального усилия, связанного с выливанием большого количества жидкости, корпус отрывается от днища и отбрасывается в сторону. Одновременно крыша резервуара обрушивается на днище, которое обычно остается на месте или немного сдвигается в сторону. На рис. 4.9 показаны примерная схема разрушения резервуара и последствия разрушения.
Кроме случаев полного разрушения стенок резервуара часто наблюдаются случаи образования трещин, нарушающих герметичность и создающих опасность дальнейшей эксплуатации резервуаров. Трещины в резервуарах появляются, как правило, в наиболее холодные месяцы года.
В качестве примера можно привести случай, когда в Восточной Сибири при резком снижении температуры (до минус 43 °С) у пяти резервуаров образовалось в течение суток 18 трещин в стенках и сварных швах. (Резервуары по 5000 м3 каждый). Несомненно, здесь сказалось наличие температурных перенапряжений. При морозе даже в пустом резервуаре температура в центральной части днища на 20...25 °С выше, чем температура наружной части корпуса.
Аппараты и трубопроводы, работающие в условиях низких температур, чувствительны к различного рода динамическим воздействиям (ударам, сотрясениям и т. п.).
Таким образом, при сооружении аппаратов, емкостей и трубопроводов, работающих в условиях воздействия низких температур, следует уделять серьезное внимание подбору материала (слайд 31). Как правило, должны применяться стали с повышенной ударной вязкостью, имеющие низкую критическую температуру хладоломкости, в частности при температуре до минус 20 °С — углеродистые стали спокойных плавок (ВСтЗсп4); при температуре минус 30 °С — углеродистые стали повышенного качества (стали 10 и 20); при температуре до минус 40...80° С — низколегированные стали (16ГС, 09Г2С); при температуре до минус 250° С — высоколегированные хромоникелевыс стали. Цветные металлы и сплавы хладоломкости не подвержены.
Для аппаратов, резервуаров, трубопроводов, выполненных из сталей с пониженной ударной вязкостью и эксплуатирующихся в районах с низкой температурой воздуха, принимают ряд дополнительных мер защиты. Так, наружные емкости, со сжиженными газами, выполненные из кипящей мартеновской стали, защищают теплоизоляцией и оборудуют внутренними змеевиками для обогрева их в зимнее время циркулирующим керосином. Температура стенки в самое холодное время не бывает в таких случаях ниже минус 5 °С. Для резервуаров с ЛВЖ и ГЖ, выполненных из стали с пониженной ударной вязкостью, в зимний период устанавливают меньшую степень заполнения, реже осуществляют операции слива и налива, принимают меры к утеплению наиболее нагруженных нижних поясов.
Вывод по второму вопросу: Таким образом, при эксплуатации производственного оборудования неплотности и повреждения могут появиться в результате образования непредусмотренных расчетом температурных напряжений в материале стенок аппаратов и трубопроводов, а также в результате изменения механических свойств металлов под воздействием высокой или низкой температуры.
Вывод по вопросу.
- Екатеринбург 2009 Тема 6
- Вопрос 1. Содержание методики анализа пожарной опасности технологических процессов.
- Вещества, обращающиеся в производстве.
- Вопрос 3. Пожаровзрывоопасность аппаратов с лвж и гж. Меры пожарной безопасности.
- Вопрос 4. Пожаровзрывоопасность аппаратов с горючими газами. Меры пожарной безопасности
- Вопрос 5. Пожаровзрывоопасность аппаратов с горючими пылями. Меры пожарной безопасности.
- Вопрос 6. Периоды остановки и пуска аппаратов.
- Вопрос 1. Открытые аппараты с пожароопасными жидкостями.
- Испарение горючих жидкостей в неподвижную среду
- Испарение горючих жидкостей в движущуюся среду (конвективная диффузия)
- Вопрос 2 «Дышащие» аппараты с пожароопасными жидкостями.
- Вопрос 3 Взрывопожарная опасность аппаратов, периодически открываемых для загрузки и выгрузки продукции и способы обеспечения пожарной безопасности
- Вопрос 4 Аппараты герметично закрытые, работающие под давлением
- Аппараты с сальниковым уплотнением вращающихся валов
- Вопрос 1. Определение количества горючих веществ, выходящих наружу при локальном повреждении и полном разрушении технологического оборудования с горючими газами, жидкостями и пылевидными материалами
- Вопрос 1. Повреждения в результате механических воздействий
- Вопрос 2. Повреждения в результате температурных воздействий
- Вопрос 3. Повреждения в результате химических воздействий
- Тема 10
- Вопрос 1. Основные принципы системы категорирования помещений и зданий по взрывопожарной и пожарной опасности.
- Вопрос 2. Определение категорий помещений по взрывопожарной и пожарной опасности расчетными методами (30 минут).
- Вопрос 3. Определение категорий зданий по взрывопожарной и пожарной опасности расчетными методами (30 минут).
- Тема 11
- Вопрос 1. Классификация производственных источников зажигания. Условия, при которых источник тепла становится источником вынужденного зажигания горючей смеси
- Вопрос 2. Открытый огонь и раскаленные продукты горения как источники зажигания горючей смеси. Способы обеспечения пожарной безопасности
- Вопрос 3. Тепловое проявление механической энергии как источник зажигания горючей смеси. Причины появления данных источников зажигания и способы обеспечения пожарной безопасности.
- Вопрос 4. Тепловое проявление химических реакций как источник зажигания горючей смеси. Причины появления данных источников зажигания и способы обеспечения пожарной безопасности.
- Вопрос 5. Тепловое проявление электрической энергии как источник зажигания горючей смеси. Причины появления данных источников зажигания и способы обеспечения пожарной безопасности.
- Тема 12
- 1. Снижение количества горючих веществ и материалов в технологии при проектировании производства.
- 2. Уменьшение количества горючих веществ в период эксплуатации производства.
- Вопрос 1. Снижение количества горючих веществ и материалов в технологии при проектировании производства.
- Вопрос 2. Уменьшение количества горючих веществ в период эксплуатации производства.
- Замена горючих веществ негорючими.
- Тема 13 «предупреждение распространения пожара по производственным коммуникациям»
- Вопрос 1. Пожарная опасность хлебных массивов.
- Вопрос 2. Виды, устройство и пожарная опасность зерносушилок.
- Тема 14
- 1. Способы защиты аппаратов от разрушения при взрыве.
- 2. Расчет мембранных клапанов для защиты аппаратов от разрушения при взрыве.
- 3. Системы мгновенного подавления химической реакции взрыва.
- Вопрос 1. Способы защиты аппаратов от разрушения при взрыве.
- Вопрос 2. Расчет мембранных клапанов для защиты аппаратов от разрушения при взрыве.
- Вопрос 3. Системы мгновенного подавления химической реакции взрыва.