2. Параметры реакции горения
Горение возникает при наличии горючего вещества, окислителя и источника воспламенения. В реальных условиях окислителем является кислород воздуха. При горении систем, не содержащих газообразных частей и состоящих только из твёрдых или жидких фаз – пламя может не возникать, то есть происходит беспламенное горение или тление.
Окислитель – обычно это кислород воздуха, но могут быть и другие (горение металлов в среде хлора). В зависимости от состава различные горючие вещества требуют определённого количества окислителя.
Теоретически необходимое количество воздуха для получения продуктов полного горения:
Окись углерода 1 кг – 2,5 кг воздуха
Метан 1 кг - 17,2 кг воздуха
Бензин 1 кг – 15 кг воздуха
На практике полное сжигание не может быть осуществлено без избыточного количества воздуха. Оно зависит от методов сжигания и находится в пределах от 15 до 50%.
Продукты горения большинства веществ газообразны и при достаточном количестве воздуха состоят из водяного пара и углекислого газа. Присутствуют также окиси азота и серы в малых кол-вах. В случае недостаточного кол- ва воздуха,т.е. неполного сгорания, в состав продуктов горения могут так же входить метан, окись углерода и водород.
Теплота горения. Каждое горючее вещ-во хар-ся высшей и низшей теплотворной способностью. Высшая теплотворность- это кол-во тепла, кот. Выделится при сгорании и при послед. Конденсации влаги, содерж-ся в продуктах горения. Если влага остается в газообразном, парообразном сост, то это низкая теплотворность.
Температура горения- это температура до которой в процессе горения нагреваются продукты горения и исходного горючего вещ-ва. Если предполагать что все тепло при сгорании топлива идет на нагрев продуктов горения то t горения будет наз-ся теоретической. Действительная температура всегда ниже и определяется следующим:
1)кол-вом тепла, выделяемом при горении.
2)составом и кол-вом продуктов горения
3)кол-вом тепла, отданного в окр.среду.
Скорость горения определяется временем, в течении которого сгорает определённое количество горючего вещества. На практике скорость горения определяется временем в течении которого происходят чисто физические процессы: теплопередачи, излучения, испарения и др. Совокупность всех этих процессов определяет реальную скорость горения, на которую оказывают влияние следующие факторы:
Природа горючего вещества( тв, ж, г)
Концентрация вещества
Давление и температура.
3. Механизм процесса горения (4+5)
- 1.Виды горения
- 2. Параметры реакции горения
- 4. Тепловое самовоспалменение
- 5. Цепные реакции
- 6. Показатели пожарной опасности веществ и материалов
- 7. Температура вспышки, самовоспламенения
- 8. Концентрационные пределы самовоспламенения
- 9. Виды самовозгорания
- 10. Механизм самовозгорания
- 11. Группы веществ для совместного хранения
- 12. Пожарная профилактика технологических процессов
- 13. Схема обеспечения пожарной профилактики
- 14. Анализ пожарной опасности технологических процессов
- 15. Индивидуальный и социальный риск
- 16. Оценка пожарной опасности обычных технологических процессов
- 17. Мероприятия по снижению последствий пожаров
- 18. Пожарная безопасность зданий и сооружений
- 19. Пожарно-техническая классификация
- 20. Пожароопасность строительных материалов
- 21. Огнестойкость строительных конструкций.
- 21.Противопожарные преграды
- Противопожарные зоны
- Противопожарные стены
- Перегородки
- Проёмы в противопожарных стенах и перегородках
- Перекрытия
- 22. Степень огнестойкости зданий
- 23. Обеспечение безопасности людей
- 24. Эвакуационные и аварийные выходы
- 25. Категории помещений и зданий по взрывопожароопасности
- 26. Определение категорий в1 – в4 помещений
- 27. Классификация взрывопожарных зон
- 28. Пожарная безопасность электроустановок
- 29. Причины загорания проводов, кабелей, двигателей
- 30. Параметры взыровпожароопасности (мэп, нгв,вгв)
- 31. Взрывоопасные смеси (бэмз)
- 32. Методы взрывозащиты
- 33. Взрывонепроницаемая оболочка
- 34. Методы изоляции
- 35. Искробезопасная электрическая цепь
- 36. Маркировка взрывозащищенного электрооборудования