1.1. Космические излучения
Космические излучения приходят к нам в основном из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек.Каждую секунду на площадь в 1 м2 через границу атмосферы из космоса в направлении земной поверхности влетает более 10 тыс. заряженных частиц.
Космические излучения подразделяются на галактические и солнечные. Галактические, в свою очередь, бывают первичными и вторичными. Первичное галактическое излучение представляет собой поток частиц, падающих в земную атмосферу и идущих из глубины космоса со скоростью света. Оно состоит из протонов (около 92 %) и альфа-частиц (примерно 6 %). В небольших количествах (около 2 %) в них присутствуют ядра легких элементов (Li, Be, B, C, N, O, F), электроны, нейтроны и фотоны. Энергия такого излучения огромна и колеблется в диапазоне от 1 до 1012 ГэВ, что в миллиард раз превышает уровень энергий, достигнутых на самых современных ускорителях. При энергиях свыше 103 МэВ плотность потока протонов падает. При энергиях меньше 103 МэВ состав первичного галактического излучения сильно меняется. На него воздействует магнитное поле Земли, которое отклоняет низкоэнергетическое излучение обратно в космическое пространство. Первичное галактическое излучение в результате взаимодействия с атомами элементов атмосферы почти полностью исчезает на высоте 20 км.
Вторичное галактическое излучение имеет гораздо более сложный состав и состоит практически из всех известных в настоящее время элементарных частиц. Оно образуется в результате ядерных взаимодействий между первичным излучением с ядрами атомов, входящих в состав земной атмосферы. Каждая частица из первичного излучения, благодаря высокой энергии, вызывает целый каскад частиц, которые, в свою очередь, взаимодействуя с ядрами, вызывают ряд следующих ядерных превращений. У поверхности Земли вторичное излучение состоит в основном из фотонов, электронов, позитронов, других ядерных частиц, а также небольшой доли нейтронов. Нейтронная компонента возникает в результате расщепления ядер высокоэнергетическими частицами. Состав и интенсивность вторичного галактического излучения зависят от высоты над уровнем моря, географической широты и изменяются во времени в соответствии с 11-летним циклом солнечной активности. Максимальная интенсивность вторичного галактического излучения наблюдается на высоте 20–25 км. На высотах свыше 40–45 км преобладает первичное излучение.
В результате взаимодействия первичного и вторичного излучений с ядрами элементов атмосферы образуются так называемые космогенные радионуклиды. К ним относятся: , , , , , , , и другие.
Солнечное излучение образуется во время солнечных вспышек, характеризуется относительно низкой энергией (40–50 МэВ) и не приводит к существенному увеличению дозы внешнего облучения на поверхности Земли. Однако в верхних слоях атмосферы мощность поглощенной дозы может на очень короткое время увеличиваться в 100 и более раз.
Нет такого места на Земле, куда бы не падал этот невидимый космический душ. Но одни участки земной поверхности более подвержены его действию, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы, из которых в основном и состоят космические излучения. Учитывая состав и энергию излучения у поверхности Земли, коэффициент его качества принято считать 1,1. Основными космогенными радионуклидами – источниками внешнего излучения – являются , , . Средняя суммарная эквивалентная доза внешнего излучения, создаваемая всеми компонентами космического излучения на уровне моря, в год составляет 0,32 мЗв. На высоте 4–5 км величина этой дозы уже 5 мЗв в год, а на высоте 20 км достигает 13 мЗв/ч. При орбитальных полетах космонавты подвергаются сравнительно небольшому облучению – 0,05 мЗв/сут. И для таких полетов не требуется специальной защиты.
Приводимые выше числа относятся к дозам внешнего облучения, доза за счет внутреннего облучения, формируемая космогенными радионуклидами, невелика, и из более 20 таких элементов заметный вклад в дозу вносят лишь два: тритий и изотоп углерода .
Тритий с периодом полураспада 12,3 года в основном входит в состав молекулы воды и в этом виде участвует в круговороте воды в природе. Радиоактивный углерод (Т1/2 – 5730 лет) используется в так называемом радионуклидном анализе.
Таким образом, суммарная мощность эквивалентной дозы, получаемой от космического излучения, составляет примерно 0,33 мЗв/год, для населения нашей республики доза составляет 0,37 мЗв/год.
- . Бета-излучения
- Нейтронные излучения
- . Гамма-излучения
- 2.2. Экспозиционная доза излучения
- 2.3. Эквивалентная доза излучения
- 2.4. Мощность дозы и единицы ее измерения
- 4 Альфа-излучения
- Явление радиоактивности.
- Дозы внешнего облучения
- 1.1. Космические излучения
- 1.2. Излучения земного происхождения
- 3.1. Физические принципы регистрации ионизирующих излучений, их основные характеристики
- Детекторы ионизирующих излучений
- 3.2.1. Ионизационная камера
- 3.2.2. Газоразрядный счетчик
- 4.2.3. Сцинтилляционный счетчик
- Особенности действия малых доз радиации
- Радиационная обстановка после аварии на чаэс
- Поведение радионуклидов в почве и переход их в растениеводческую продукцию
- Физические, химические и другие способы защиты человека от радиации.
- Значение слоя половинного ослабления для некоторых материалов