logo
учебник по БЖД

5.4.4. Ионизирующие излучения

Ионизирующие излучения возникают при работе приборов, в основе действия которых лежат радиоактивные изотопы, при работе электровакуумных приборов, дисплеев и т.д.

К ионизирующим излучениям относятся корпускулярные (альфа-, бета-, нейтронные) и электромагнитные (гамма-, рентгеновское) излучения, способные при взаимодействии с веществом создавать заряженные атомы и молекулы - ионы.

Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или при ядерных реакциях.

Чем больше энергия частиц, тем больше полная ионизация, вызванная ею в веществе. Пробег альфа - частиц, испускаемых радиоактивным веществом, достигает 8-9 см в воздухе, а в живой ткани - нескольких десятков микрон. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обуславливает их низкую проникающую способность и высокую удельную ионизацию, составляющую в воздухе на 1 см пути несколько десятков тысяч пар ионов.

Бета-излучение - поток электронов или позитронов, возникающих при радиоактивном распаде.

Максимальный пробег в воздухе бета-частиц составляет 1800 см, а в живых тканях 2,5 см. Ионизирующая способность бета-частиц ниже (нескольких десятков пар на 1 см пробега), а проникающая способность выше, чем альфа - частиц.

Нейтроны, поток которых образует нейтронное излучение, преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов.

При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов (гамма-излучение). При упругих взаимодействиях возможна обычная ионизация вещества.

Проникающая способность нейтронов существенно зависит от их энергии и состава вещества атомов, с которыми они взаимодействуют.

Гамма-излучение - электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц.

Гамма излучение обладает большой проникающей способностью и малым ионизирующим действием.

Рентгеновское излучение возникает в среде, окружающей источник бета-излучения (в рентгеновских трубках, в ускорителях электронов) и представляет собой совокупность тормозного и характеристического излучения.

Тормозное излучение - фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц.

Характеристическое излучение - это фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атомов.

Как и гамма-излучение, рентгеновское излучение обладает малой ионизирующей способностью и большой глубиной проникновения.

Для количественной оценки ионизирующего действия рентгеновского и гамма-излучения в сухом атмосферном воздухе используется понятие экспозиционной дозы. Экспозиционная доза представляет собой отношение полного заряда ионов одного знака, возникающих в малом объеме воздуха, к массе воздуха в этом объеме. За единицу этой дозы принимают кулон на килограмм (Кл/кг). Применяется также внесистемная единица - рентген (Р).

Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой и измеряется в системе СИ в Грэях (Гр). Грэй – доза излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Эта доза не учитывает, какой вид излучения воздействовал на организм человека. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в системе СИ в единицах, называемых зивертами (Зв).

Доза эффективная - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы в органе на соответствующий взвешивающий коэффициент для данного органа или ткани. Эта доза также измеряется в зивертах.

Специальная единица эквивалентной дозы - бэр. Бэр - поглощенная доза любого вида излучения, которая вызывает равный биологический эффект с дозой в 1 рад рентгеновского излучения. Рад - специальная единица поглощенной дозы зависит от свойств излучения и поглощающей среды.

Поглощенная, эквивалентная, эффективная и экспозиционная дозы, отнесенные к единице времени, носят название мощности соответствующих доз.

Условная связь системных единиц:

100 Рад = 100 Бэр = 100 Р = 13 В = 1 Гр

Биологическое действие излучения зависит от числа образованных пар ионов или от связанной с ним величины - поглощенной энергии.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры различных соединений. Изменение химического состава значительного числа молекул приводит к гибели клеток.

Под влиянием излучений в живой ткани происходит расщепление воды на атомарный водород Н и гидроксильную группу ОН, которые, обладая высокой активностью, вступают в соединение с другими молекулами ткани и образуют новые химические соединения, не свойственные здоровой ткани. В результате происходящих изменений нормальное течение биохимических процессов и обмен веществ нарушается.

Под влиянием ионизирующих излучений в организме происходит торможение функций кроветворных органов, нарушение нормальной свертываемости крови и увеличение хрупкости кровеносных сосудов, расстройство деятельности желудочно-кишечного тракта, истощение организма, снижение сопротивляемости организма инфекционным заболеваниям, увеличение числа белых кровяных телец (лейкоцитоз), ранее старение и др.

Вид радиационного поражения человека зависит от характера источников ионизирующих излучений.

Естественный фон излучения состоит из космического излучения и излучения естественно-распределенных радиоактивных веществ. Естественный фон внешнего излучения на территории нашей страны создает мощность эквивалентной дозы 0,36-1,8 мЗв в год, что соответствует мощности экспозиционной дозы 40-200 мР/год.

Кроме естественного облучения, человек облучается и другими источниками, например, при производстве рентгеновских снимков черепа 0,8–6 Р; позвоночника 1,6-14,7 Р; легких (флюорография) 0,2-0,5 Р; грудной клетке при рентгеноскопии 4,7-19,5 Р; желудочно-кишечного тракта при рентгеноскопии 12-82 Р; зубов 3-5 Р.

Однократное облучение в дозе 25-50 бэр приводит к незначительным скоропроходящим изменениям в крови, при дозах облучения 80-120 бэр появляются признаки лучевой болезни, но смертельный исход отсутствует. Острая лучевая болезнь развивается при однократном облучении 200-300 бэр, смертельный исход возможен в 50% случаев. Смертельный исход в 100% случаев наступает при дозах 550-700 бэр. Эти данные - когда лечение не проводится. В настоящее время существует ряд противолучевых препаратов, ослабляющих действие излучения.

Хроническая лучевая болезнь может развиваться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика глаза, снижение иммунитета организма.

Степень воздействия радиации зависит от того, является облучение внешним или внутренним. Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, накапливающиеся в организме изотопы йода могут вызывать поражения щитовидной железы, редкоземельные элементы – опухоли печени, изотопы цезия, рубидия – опухоли мягких тканей.

В настоящее время предельно допустимые уровни ионизирующего облучения определяются “Нормами радиационной безопасности НРБ-76/87” и “Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений ОСП-72/87”.

В соответствии с НРБ-76/87 и ОСП-72/87 установлены следующие категории облучаемых:

ü категория А – персонал – лица, работающие с источниками ионизирующего излучения;

ü категория Б - ограниченная часть населения - лица непосредственно не работающие с источниками ионизирующего излучения, но по условиям проживания или размещения рабочих мест подвергающиеся воздействию радиоактивного излучения;

ü категория В – все остальное население области, края, республики, страны.

В порядке убывания радиочувствительности устанавливаются три группы критических органов:

I. Все тело, гонады и красный костный мозг (гонады - от греческого слова “gone” - порождающие, половые железы).

II. Мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза и другие органы, за исключением тех, которые относятся к группам I и III.

III. Кожный покров, костная ткань, кисти, предплечья, лодыжки и стопы.

Мерой безопасности облучения является эквивалентная доза. Ее единица измерения - бэр.

Устанавливаются предельно допустимые дозы облучения (ПДД) - наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами (см. табл. 8).

Таблица 8

Предельно допустимые дозы облучения

Дозовые пределы,

бэр за год

Группа критических органов

I

II

III

ПДД для категории А

ПДД для категории Б

5

0,5

15

1,5

30

3

Защита от ионизирующих излучений состоит из комплекса организационных и технических мер, осуществляемых путем экранирования источников излучения или рабочих мест, удаления источника от рабочих мест, сокращения времени облучения.

К организационным мерам относится:

§ выбор радионуклидов с меньшим периодом полураспада;

§ применение измерительных приборов большей точности;

§ инструктажи с указанием порядка и правил проведения работ, обеспечивающих безопасность;

§ применение специальных хранилищ для радиоактивных веществ;

§ медицинский контроль за состоянием здоровья работающих.

Технические меры защиты заключаются в экранировании источников излучения или рабочих мест, при помощи которого можно снизить облучение на рабочем месте до заданного значения (рис. 89, 90).

Альфа-частицы имеют небольшую длину пробега, поэтому слой воздуха в несколько сантиметров, одежда, резиновые перчатки являются достаточной защитой.

Для защиты от бета-излучений применяют материалы с небольшим атомным весом (плексиглас, алюминий). Для защиты от бета-излучений высоких энергий этими материалами облицовывают экраны из свинца, т.к. при прохождении бета-частиц через вещество возникает тормозное излучение в виде рентгеновского излучения.

Гамма-излучение и рентгеновское лучше всего поглощается материалами с большим атомным номером и высокой плотностью (свинец, вольфрам). Применяют и другие материалы: сталь, железо, бетон, чугун, кирпич и т.д. При этом чем меньше атомная масса вещества экрана и чем меньше плотность защитного материала, тем больше требуется толщина экрана.

Защитные экраны могут быть стационарные, передвижные, настольные, разборные.

Может быть использована в качестве технических мер защиты вытяжная вентиляция.

В качестве средств индивидуальной защиты от альфа и бета-излучений применяют индивидуальные защитные костюмы, изолирующие противогазы.