1. Развитие атомной энергетики
Первая в мире атомная электростанция (АЭС) опытно-промыш-ленного назначения электрической мощностью 5 МВт была введена в эксплуатацию в СССР, в г. Обнинске Калужской области 27 июня 1954 года. Основным ее агрегатом является реактор на тепловых нейтронах. Ядерное топливо обогащенный уран размещается в графитовом замедлителе, в 128 рабочих каналах. Внутри каждого из них циркулирует теплоноситель дистиллированная вода высокой степени очистки.
Уже на первой, Обнинской АЭС были предусмотрены различные системы, обеспечивающие безопасность обслуживающего персонала. Во всех помещениях были установлены приборы контроля уровня радиоактивности, снабженные световой и звуковой сигнализацией.
Эксплуатация Обнинской АЭС дала богатый опыт для конструирования АЭС большой мощности. Однако широкое строительство энергетических АЭС было начато в Советском Союзе далеко не сразу после успешного пуска первой атомной станции. В СССР достаточно длительное время хотя и позитивно, но весьма сдержанно относились к сооружению АЭС. Открыв эру ядерной энергетики, Советский Союз начал активно развивать ее у себя лишь с середины 70-х гг.
Развитие ядерной энергетики способствует укреплению энергетической независимости отдельных стран и тем самым оказывает стабилизирующее влияние на мировую экономику. Об этом свидетельствует, в частности, опыт Франции, где на АЭС производится больше половины всей вырабатываемой в стране электроэнергии.
В Советском Союзе на начало 1989 г. насчитывалось 46 энергоблоков АЭС общей электрической мощностью 35,4 ГВт. В 1988 г. на советских атомных электростанциях было выработано 215,7 млрд. кВтч электроэнергии; прирост выработки электроэнергии за этот год составил 15,3%. СССР вышел на третье место в мире по данному показателю. В то же время доля АЭС в общем объеме производства электроэнергии в Советском Союзе в 1988 г. составила лишь около 12%.
Развитие ядерной энергетики в СССР первоначально основывалось на двух типах ядерных реакторов (оба типа на тепловых нейтронах). На начальной стадии это были уран-графитовые канальные кипящие реакторы. Последним из данной серии является РБМК реактор большой мощности канальный. Широко эксплуатируется в различных регионах страны и поставляется за рубеж другой тип реактора ВВЭР (водо-водяной энергетический реактор). К 80-м гг. началось внедрение еще одного типа ядерной энергетической установки реактора на быстрых нейтронах. Важная особенность реакторов на быстрых нейтронах состоит в том, что они не только обеспечивают производство электроэнергии, но и воспроизводят ядерное топливо (например, плутоний-239) в результате поглощения ядрами урана-238 части быстрых нейтронов, испускаемых в процессе деления ядер исходного топлива.
В СССР разрабатывалось и частично реализовалось еще одно направление использования атомной энергии в мирных целях. Известно, что при обеспечении городов и поселков горячей водой для отопления и бытовых нужд страна расходует до 40% общего объема органического топлива. С целью экономии органического топлива и был разработан проект специальных атомных станций теплоснабжения (АСТ). Эксплуатация АСТ с двумя водо-водяными реакторами тепловой мощностью по 500 МВт позволит обеспечить горячей водой городской район с населением около 400 тыс. человек и даст возможность закрыть 270 мелких котельных.
Развитие атомной энергетики в Советском Союзе на первый взгляд не было насущной необходимостью. Действительно, СССР был обеспечен запасами органического топлива на многие годы. Однако около 90% топливных и 80% гидроэнергетических ресурсов находились в азиатской части СССР. В то же время основная доля потребления электроэнергии приходилась на европейскую часть страны, где проживало около 70% населения. Именно поэтому после исследования возможностей покрытия недостатка электроэнергии в европейских регионах страны специалисты пришли к выводу об экономической целесообразности строительства в европейской части СССР именно атомных электростанций.
Очень важно видеть и экологический аспект проблемы. По имеющимся расчетам, при сжигании органического топлива ежегодно в атмосферу выбрасывается 200 250 млн. т золы и около 60 млн. т сернистого ангидрида. К 2100 г. эти выбросы могут возрасти до 1,5 млрд. т и 400 млн. т соответственно. Кроме того, в атмосферу из труб тепловых электростанций попадает большое количество оксидов азота, углерода и других элементов, включая естественные токсичные и радиоактивные элементы (например, радий и полоний). Сернистый газ уже обусловливает так называемые кислотные дожди в странах Северного полушария. Оценивая степень опасности или безопасности атомной энергетики, следует помнить, что обычные тепловые электростанции примерно в 100 раз сильнее, чем атомные (при безаварийной работе), загрязняют окружающую среду вредными выбросами, в том числе и радиоактивными (изотопы из семейства урана и тория, калий-40). В частности, в угле содержится радиоактивный изотоп углерода, который при сжигании выбрасывается в составе углекислого газа.
Вслед за первой в мире советской атомной электростанцией их начали строить и в других странах. В конце 1956 г. в Великобритании (Колдер-Холл) пустили промышленную ядерную электростанцию мощностью 46 МВт с графитовым замедлителем. Тепло из реактора здесь отводилось углекислым газом. В конце 1957 г. ввели в строй атомную электростанцию мощностью 60 МВт в США (Шиппингпорт).
По данным МАГАТЭ, в 1987 г. атомные электростанции действовали в 26 странах мира. В общей сложности в конце 1987 г. в мире работало 406 атомных реакторов. При этом ядерная энергетика обеспечивала около 16% мирового электроснабжения. В этом же году насчитывалось 19 стран, в которых доля выработанной на АЭС электроэнергии составила 10% и более от общего объема ее производства. Выработка электроэнергии на атомных электростанциях во всем мире составила в 1985 г. около 1400 ТВтч. Именно такое количество электроэнергии было получено во всем мире в 1954г. Для выработки этого количества электроэнергии на тепловых электростанциях потребовалось бы сжигание 570 млн. т угля.
В некоторых странах доля вырабатываемой на АЭС электроэнергии по отношению к общему объему производства очень высока. Так, в 1987 г. она составила во Франции 70%, в Бельгии 67%, в Швеции 50%. В 1984 г. Франция в области энергообеспечения на 84% зависела от импорта электроэнергии, а в1985 г. эта зависимость сократилась до 64%. В Канаде в 1987 г. доля АЭС в производстве электроэнергии равнялась 14,7%, а в ее провинции Онтарио она составляла более 40%. В США атомная энергетика выработала в 1987 г. 16,6% всей произведенной электроэнергии, а в шести штатах этот показатель превышал 50%.
- 1. Развитие атомной энергетики
- 2. Радиационные аварии в великобритании и сша в период, предшествующий чернобыльской катастрофе
- 3. Кыштымская радиационная авария 1957 г.
- 3.1. Химический комбинат "маяк".
- 3.2. Производственные и аварийные выбросы радиоактивности
- 3.3. Радиационная авария 1957 г.
- 3.4. Радиационная обстановка после аварии
- 3.5. Поведение радиоактивных веществ в окружающей среде
- 3.6. Воздействие радиоактивного загрязнения на флору и фауну на территории следа
- 3.7. Облучение населения и медицинские последствия аварии
- 4. Аварийные ситуации на ядерных реакторах в ссср в период, предшествующий чернобыльской катастрофе
- Чернобыльская катастрофа 1986 г.
- 6.1 Чернобыльская атомная электростанция
- 6.2. Причины аварии
- 6.3. Распространение радиации и медицинские аспекты аварии