logo
6210

Текст № 1 Математический компонент музыкального языка

Взаимосвязью между музыкой и математикой интересовались еще в древности. И это неудивительно, поскольку присутствие в музыке математического компонента очевидно. Самые важные характеристики звука – его высота и длительность – определяются количеством колебаний и продолжительностью звучания, которые в свою очередь выражаются посредством конкретного числа. Как известно, пифагорейцы предположили, что в основе мира лежит некая абстракция – число. Более того, число в различных ипостасях: «бог-число», «вещь-число», «искусство-число» и т.д. - стало у них сущностью мира. Эта числовая конструкция бытия мыслилась ими как конкретный «музыкально-числовой космос» или «строй мира», действующий гармонично во всех проявлениях. Таким образом Пифагор и его последователи попытались объединить математику, гармонию и музыку в единую сущность не только космоса, но и человеческой души и конкретной вещи. Музыкальная гармония мыслилась древними как некая логически построенная система, которая имеет много общего с математикой. В глубокой древности было подмечено определенное соответствие между высотой звука и конкретным числом, определяющим длину струны. Именно по этому принципу был создан широко популярный в античности музыкальный инструмент – лира, который впоследствии стал эмблемой музыкальной искусства. Рассмотрим взаимосвязи между математикой и музыкой с точки зрения ее теоретического построения. Основой математических знаний является арифметический счет. Счет как числовой ряд состоит из определенной последовательности чисел, в которой каждое последующее число больше предыдущего на одну единицу – и это уже само по себе является определенной ритмической закономерностью. Арифметические действия с числами происходят путем перемещения по этому числовому ряду либо в сторону увеличения, либо наоборот. Чтобы, например, к двум прибавить пять нужно от 2 переместиться на 5 единиц в сторону увеличения чисел – получаем 7. По аналогии, музыкальный звукоряд – это последовательность музыкальных звуков, в которой каждый последующий звук выше предыдущего также на одну единицу, (в музыке ей соответствует полутон), если звукоряд восходящий. Соответственно, если звукоряд нисходящий, то каждый последующий звук ниже предыдущего на полтона. Аналогично арифметическому действию мы можем вычислить музыкальный звук путем перемещения по музыкальному ряду. Ученые, изучавшие взаимосвязь между восприятием музыки и мыслительными процессами (Генрих Гетце 1994, Мария Спайхигер 2000) утверждают, что, оперируя математическим рядом чисел и выполняя любые арифметические действия «в уме», будь то сложение, вычитание, умножение, деление или даже извлечение корня и возведение в степень, человек достигает результата весьма похожими пространственными мыслительными операциями, что и при дифференциации звуковысотности и длительности. Нам также кажется весьма логичным утверждение, что существует определенная связь между арифметическими и музыкальными мыслительными операциями. При написании музыкального диктанта человек, не обладающий абсолютным музыкальным слухом вполне в состоянии записать точно и правильно прослушанную им мелодию, если он хорошо дифференцирует сравнительную звуковысотность (выше-ниже), темп (быстрее-медленнее), музыкальные длительности (дольше, короче, длиннее). Способность дифференцировать эти сравнительные соотношения тренируется и развивается музыкальными занятиями. Те же соотношения используются и в математике. Определение интервала в музыке есть не что иное, как вычисление разности между двумя звуками. Интересно и то, что когда музыканты воспринимают музыкальные интервалы, то в их воображении автоматически возникает числовой ряд, отрезок которого равен определенному интервальному отрезку, т.е. представляется отрезок чисел от 1 до 4 - если слышат кварту, от 1 до 7, если септиму и т.д. Наверное, возможно также представление септимы как отрезок чисел от 2 до 9 или от 3 до 10 – он также равен 7. Построение музыкального произведения имеет свою логику и числовые характеристики. Соотношение частей музыкального произведения образуют музыкальную форму. Составные элементы музыкальных форм – мотивы, фразы, предложения, периоды – в совокупности образуют мелодию. Обычно мотив умещается в 1-2 такта, отрезок из 2-3 мотивов образует относительно законченное музыкальное построение, называемое фразой; 2 фразы образуют предложение, 2 предложения составляют законченный раздел, завершающийся кадансом и который называется периодом, который состоит в свою очередь из 8 или 16 тактов. Разные способы развития и сопоставления элементов мелодии образуют различные типы музыкальных форм. Так, последование 2 периодов образует простую двухчастную форму, 3 раздела образуют сложную трехчастную форму. Существуют и другие музыкальные формы: тема с вариациями, куплетная форма, рондо, сонатная форма, фуга, смешанные формы. Но все они представляют собой определенную формулу музыкального построения, как, например, известная 12-тактовая формула классического блюза или формула построения джазовой пьесы. Изучив определенные законы построения музыкального произведения, можно научиться сочинять музыку – по формуле, точно также как и формально сочинять стихи (правда, нет гарантии, что эти произведения будут представлять из себя какую-либо художественную ценность). И хотя композиторами становятся далеко не все студенты музыкальных отделений, тем не менее, на занятиях по музыкальной гармонии фуги сочиняют все. Что же касается нотной записи, то здесь без математических знаний не обойтись! То, с чего собственно и начинается музыка, один из основных элементов выразительности мелодии (наряду с различной высотой, интервальными соотношениями звуков, составляющих мелодию) – это ритм. Мелодия образуется только в том случае, если звуки организованы ритмически, т.е. определяются определенными длительностями. Чередование звуков вне ритма не воспринимается как мелодия; ритм же подчас настолько ярко характеризует мелодию, что ее можно узнать только по обозначению длительностей звуков без указания их высоты. Основные ритмические измерения, применяемые в музыке - это относительные длительности: целая нота, половинная, четвертная, восьмая, шестнадцатая, тридцать вторая. Относительной длительностью называется продолжительность данного звука по сравнению с другими. Абсолютная же длительность звуков в музыке устанавливается темпом, т.е. скоростью звучания, а именно показателем скорости по метроному. Доля такта – это единица метра музыкального размера. Доли такта представляют собой малые отрезки одинаковой длительности, из которых складывается данный текст. Величина доли такта указывается в знаменателе дроби, обозначающей размер: например, в размере 3/4 – долей такта является четвертная нота, в размере 2/2 – половинная, в размере 3/8 – восьмая. Числитель дроби указывает количество долей в такте. Показатель по метроному определяет, сколько долей (половинных, четвертных или восьмых) должно прозвучать в течение минуты. Так, обозначение четвертная нота = 80 указывает, что в минуту должны прозвучать 80 четвертных долей (и соответственно – 40 половинных или 160 восьмых и т.д.). Причем, абсолютная длительность звуков является важнейшим условием музыкальной выразительности, от которого зависит замысел музыкального произведения. Таким образом, общность и единообразие математических и музыкально-теоретических процессов очевидны, и это служит свидетельством того, что занятия математикой могут значительно облегчить изучение музыкальной гармонии и сольфеджио, и наоборот – решение музыкальных задач и упражнений или даже просто активное восприятие музыки может способствовать улучшению арифметических навыков. В связи с этим нам представляется весьма интересным использование музыкальных видов деятельности при обучении детей математике.

Текст №2