Нормы освещенности по СанПиН 2.2.1/1278—03 (извлечения — для образовательных учреждений)
Помещения | КЕО при боковом естественном освещении, % | Искусственное освещение Emin, лк | ||
комбинированное освещение | общее освещение | |||
всего | от общего |
| ||
Классные комнаты, кабинеты, аудитории | 1,5 | — |
| 300(оптимально 500) |
Кабинеты информатики и вычислительной техники | 1,2 | — | — | 400 |
Мастерские по обработке металлов и древесины | 1,2 | 1000 | 200 | 300(оптимально 500) |
Кабинеты и комнаты преподавателей | 1,0 |
|
| 300 |
Представленные выше уровни освещенности установлены для нормального зрения. С возрастом острота зрения снижается, и это требует повышения уровня освещения.
Зрительная работоспособность. Зрительный комфорт достигается при нормативном и равномерном освещении; при отсутствии бликов и ослепленности; при соответствующей контрастности; при отсутствии пульсаций света и центробежного эффекта.
Ослепленность. Находящиеся в поле зрения человека поверхности высокой яркости могут производить неприятное, дискомфортное ощущение или вызывать состояние ослепленности. В результате резко снижается и работоспособность. Источниками высокой яркости являются осветительные установки и источники света. Уменьшение ослепленности может быть достигнуто увеличением высоты установки светильников; уменьшением яркости светильников путем закрытия источников света светорассеивающими стеклами; применением светильников с необходимым защитным углом. Желаемого эффекта по снижению ослепленности человека можно также достичь уменьшением мощности каждого отдельного светильника за счет соответствующего увеличения их числа.
Ослепленность может также возникать при больших коэффициентах отражения поверхностей, попадающих в поле зрения. Наибольшая опасность возникает при освещении зеркальных поверхностей, когда свет падает на эти поверхности таком образом, что глаза находятся на направлении зеркального отражения лучей. В этом случае человек видит либо зеркальное отражение источника света, либо размытое, но очень яркое световое пятно. Устранение отраженной ослепленности достигается правильной организацией местного и локализованного освещения и таким расположением светильников, чтобы зеркально отраженные поверхностью лучи не попадали в глаза.
Контраст между объектом и фоном. Одним из эффективных средств для повышения контраста является искусственный фон (светлый, если деталь темная, или темный, если деталь светлая). Разновидностью искусственных фонов являются световые столы, на которых поверхности просматриваются в подходящем свете и которые используются при копировании с темных оригиналов.
Постоянство освещенности во времени. Изменения освещенности по времени можно классифицировать как: медленные и плавные, частые колебания и пульсации. Медленные изменения вызываются постепенными изменениями сетевого напряжения и факторами, изменяющими освещенность в процессе эксплуатации (загрязнением источников света, снижением светоотдачи и т.д.). Если освещенность при этом сохраняется на уровне не ниже нормативного значения, эти изменения не являются вредными.
Причиной частых колебаний являются перемещения светильников, их раскачивание движением воздуха (ветер, сквозняк, вентиляция и т.д.) и колебания напряжения в сети, порождаемые изменение нагрузки. На каждый процент изменения сетевого напряжения источники света реагируют изменениями светового потока в ту же сторону: лампы накаливания – на 3,7%, люминесцентные – на 1%, лампы ДРЛ – на 3%. Устранение колебаний освещенности обеспечивается закреплением светильников и стабилизацией изменений напряжения сети.
Пульсации освещенности обусловлены малой инерционностью излучения газоразрядных ламп, световой поток от которых пульсирует при переменном токе промышленной частоты. Эти пульсации неразличимы при фиксировании глазом неподвижной поверхности, но легко обнаруживаются при рассматривании движущихся предметов.
Если при пульсирующем освещении быстро махать карандашом на контрастирующем фоне, то карандаш приобретает ясно видимые контуры. Эффективнее пульсации можно обнаружить с помощью стробоскопического волчка, который можно выполнить из белого картона, на поверхности которого нанесены черными линиями радиусы через равные углы. Если при вращении волчка время его вращения на угол, равный углу между соседними радиусами, равно периоду пульсаций или в целое число раз меньше его, то волчок покажется остановившимся. При незначительном увеличении скорости вращения волчка он покажется вращающимся в действительном направлении, но очень медленно, при уменьшении скорости – изменившим направление вращения. Это явление носит название стробоскопического эффекта.
Практическая опасность стробоскопического эффекта состоит в том, что вращающиеся части механизмов могут показаться неподвижными, вращающимися с более медленной скоростью, чем в действительности, или в противоположном направлении. Это может стать причиной травматизма.
Пульсации освещенности вредны и при работе с неподвижными поверхностями, вызывая утомление зрения и головную боль.
Организация рабочего места для создания комфортных зрительных условий. Освещенность рабочего места должна быть равномерной. Во всяком случае, не должно быть значительной разницы в освещенности различных участков рабочего места, чтобы не требовалось частой переадаптации зрения. Например, поверхности предметов, с которыми в данный момент осуществляется работа, должны иметь одинаковую освещенность. Подсветка с помощью небольшого светильника только поверхности одного предмета приведет к различию в освещенности других предметов. Частое обращение к подсветке потребует постоянной адаптации зрения, что в конечном счете приведет к быстрому зрительному утомлению, снижению работоспособности, общему утомлению, психическому напряжению.
Письменный стол должен располагаться в хорошо освещенном месте, желательно у окна. Человек за столом должен располагаться лицом или левым боком к окну (для левшей — правым боком) для того, чтобы избежать образования тени от своего тела или руки. Светильник искусственного освещения должен располагаться относительно тела человека аналогичным образом.
Светильник должен иметь конструкцию, исключающую ослепление человека лучами, отраженными от рабочей поверхности (для этого арматура светильника должна выполняться таким образом, чтобы прямые лучи, исходящие от источника, были направлены под углами, исключающими попадание отраженного луча в глаз человека). При переходе из хорошо освещенного участка или помещения на плохо освещенный участок требуется некоторый промежуток времени для адаптации глаза к низкой освещенности. В этот период человек плохо видит. Это может привести к тому, что человек споткнется, упадет, наткнется на какой-либо предмет и т.д. и получит травму. Особенно большая опасность возникает при очень большой разнице в освещенности — более чем 20—30 раз, что требует значительного времени для глубокой переадаптации глаза, в течение которого человек очень плохо видит или не видит вообще. Если освещенность в помещении и коридоре, в который осуществляется выход из помещения, сильно различается, необходимо улучшить освещение в коридоре. Для снижения вероятности получения травмы указанные выше обстоятельства особенно важно учитывать на лестничных клетках и других травмоопасных местах.
Искусственные источники света. Для искусственного освещения применяют электрические лампы двух типов: лампы накаливания и газоразрядные лампы.
Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение (свет) в них получается в результате нагрева электрическим током вольфрамовой нити.
В газоразрядных лампах видимое излучение возникает в результате электрического разряда в атмосфере инертных газов или паров металлов, которыми заполняется колба лампы. Газоразрядные лампы называют люминесцентными, так как изнутри колбы покрыты люминофором, который под действием ультрафиолетового излучения от электрического разряда, светится, преобразуя тем самым невидимое ультрафиолетовое излучение в свет.
Лампы накаливания наиболее широко распространены в быту из-за своей простоты, надежности и удобства эксплуатации. Находят они применение и на производстве, организациях и учреждения, но в значительно меньшей степени. Это связано с их существенными недостатками: низкой светоотдачей — от 7 до 20 лм/Вт (светоотдача лампы — это отношение светового потока лампы к ее электрической мощности), небольшим сроком службы — до 2500 ч, преобладанием в спектре желтых и красных лучей, что сильно отличает спектральный состав света от солнечного света. В маркировке ламп накаливания буква В обозначает вакуумные лампы, Г — газонаполненные, К — лампы с криптоновым наполнением, Б — биспиральные лампы.
Газоразрядные лампы получили наибольшее распространение на производстве, в организациях и учреждениях, прежде всего из-за значительно большей светоотдачи (40—110 лм/Вт) и срока службы (8000—12 000 ч). Газоразрядные лампы в основном применяются для освещения улиц, иллюминации, световой рекламы. Подбирая сочетание инертных газов, паров металла, заполняющих колбы ламп, и люминофора, можно получить свет практически любого спектрального диапазона: красный, зеленый, желтый и т.д. Для освещения в помещениях наибольшее распространение получили люминесцентные лампы дневного света, колба которых заполнена парами ртути. Свет, излучаемый такими лампами, близок по своему спектру к солнечному свету.
К газоразрядным относятся различные типы люминесцентных ламп низкого давления с разным распределением светового потока по спектру: лампы белого света (ЛБ); лампы холодно-белого света (ЛХБ); лампы с улучшенной цветопередачей (ЛДЦ); лампы тепло-белого света (ЛТБ); лампы, близкие по спектру к солнечному свету (ЛЕ); лампы холодно-белого света улучшенной цветопередачи (ЛХБЦ).
К газоразрядным лампам высокого давления относятся следующие: дуговые ртутные лампы высокого давления с исправленной цветностью (ДРЛ); ксеноновые (ДКсТ), основанные на излучении дугового разряда в тяжелых инертных газах; натриевые высокого давления (ДНаТ); металлогалогенные (ДРИ) с добавкой иодидов металлов.
Лампы ЛЕ, ЛДЦ применяются в случаях, когда предъявляются высокие требования к определению цвета, в остальных случаях — лампы ЛБ как наиболее экономичные. Лампы ДРЛ рекомендуются для производственных помещений, если работа не связана с различением цветов (в высоких цехах машиностроительных предприятий и т.п.), и для наружного освещения. Лампы ДРИ имеют высокую световую отдачу и улучшенную цветность, применяются для освещения помещений большой высоты и площади.
Однако газоразрядные лампы наряду с преимуществами перед лампами накаливания обладают и существенными недостатками, которые пока ограничивают их распространение в быту. Прежде всего, это пульсация светового потока, которая искажает зрительное восприятие и отрицательно воздействует на зрение. Ограничение пульсаций до безвредных значений достигается равномерным чередованием питания ламп от различных фаз трехфазной сети, специальными схемами подключения. Это усложняет систему освещения, поэтому люминесцентные лампы не нашли широкого применения в быту. К недостаткам газоразрядных ламп относятся также следующие их особенности: длительность разгорания, зависимость работоспособности от температуры окружающей среды, создание радиопомех.
Светильники. Для лучшего использования светового потока ламп и ограничения ослепленности искусственные источники света устанавливают в осветительной арматуре. Арматура с лампой называется светильником. Для регулирования светового потока в осветительной арматуре используются следующие методы:
ограничение светового потока (если лампа установлена в непрозрачном корпусе только с одним отверстием для выхода света, то распределение света будет очень ограничено (рис. 10.9));
Рис. 10.9 Ограничение светового потока
2)отражение светового потока (используются отражающие поверхности, которые могут быть самыми разнообразными, от глубоко матовых до сильно отражающих или зеркальных; метод более эффективен, чем ограничение светового потока, так как световое излучение концентрируется и направляется в зону, где необходимо освещение (рис. 10.10)).
Рис. 10.10. Отражение светового потока
3) рассеяние светового потока (лампа устанавливается в прозрачном материале, рассеивающем и создающем диффузный (рассеянный) световой поток; диффузоры поглощают некоторое количество излучаемой световой энергии, что снижает общий коэффициент полезного действия светильника, однако при этом исключается ослепляющее действие источника света (рис. 10.11));
Рис. 10.11. Рассеяние светового потока
4) рефракция светового потока (используется эффект призмы, где обычно стеклянный или пластмассовый материал призмы искривляет лучи света и таким образом перенаправляет световой поток; метод очень эффективен для общего освещения, его преимущество состоит в устранении бликов на отражающих поверхностях за счет сочетания диффузного освещения (рис. 10.12)).
Рис. 10.12. Рефракция светового потока
В светильниках может использоваться сочетание описанных методов регулирования светового потока.
На рис. 10.13 представлены некоторые типы светильников с лампами накаливания и люминесцентными лампами, не пользуемыми в производственных и общественных помещениях. В бытовых целях применяются светильники более разнообразных конструкций и форм, выполняющих не только осветительную, но и декоративную функцию.
По распределению света светильники подразделяются на светильники прямого, рассеянного или отраженного света.
Светильники прямого света направляют более 80% светового потока в нижнюю полусферу за счет внутренней отражающей эмалевой или полированной поверхности («Глубокоизлучатель», «Универсаль», «Альфа» и др.). Светильники рассеянного света излучают световой поток в обе полусферы («Молочный шар», «Люцетта»). Светильники отраженного света более 80% светового потока направляют вверх на потолок, а отражаемый от него свет — вниз в рабочую зону. Несмотря на их гигиенические преимущества (равномерность, отсутствие блескости и др.), в производственных условиях светильники отраженного света применяются редко, так как для них требуется высокий коэффициент отражения потолка, что не всегда имеет место в условиях производства.
Рис. 10.13. Некоторые типы светильников:
а - лампы накаливания; б - люминесцентные лампы
Для защиты глаз от ослепления светящейся поверхностью служит защитный угол светильника (рис. 10.14). Защитный угол светильников β = 30÷45 °.
Рис. 10.14. Защитный угол светильника:
1 — источник света: 2 — арматура
Расчет искусственного освещения. Основным методом расчета общего равномерного освещения при горизонтальной поверхности является метод светового потока (коэффициента использования). Необходимый световой поток Фл (лм) от одной лампы накаливания или группы ламп светильника из люминесцентных ламп рассчитывают по формуле
где - нормированная минимально допустимая освещенность, лк, которая определяется нормативом (см. СНиП 23-05–95), S - площадь освещаемого помещения, м ; z – коэффициент неравномерности освещения, который зависит от типа ламп (для ламп накаливания и дуговых ртутных ламп – 1,15, для люминесцентных ламп – 1,1); k – коэффициент запаса, учитывающий запыление светильников и снижение светоотдачи в процессе эксплуатации, зависящий от вида технологического процесса, выполняемого в помещении, и рекомендуемый в нормативах (см. СНиП 23-05–95(обычно k =1,3÷1,8)); - число светильников в помещении; β — коэффициент затенения, который вводится в расчет только при наличии крупногабаритного оборудования, затеняющего пространство; η — коэффициент использования светового потока ламп, учитывающий долю общего светового потока, приходящегося на расчетную плоскость, и зависящий от типа светильника, коэффициента отражения потолка и стен , высоты подвеса светильников, размеров помещения, определяемых индексом i помещения, который определяется по формуле
Здесь А и В — длина и ширина помещения; — высота подвеса светильников над рабочей поверхностью.
Коэффициент использования светового потока ламп η определяют по таблицам, приводимым в СНиП 23-05—95 в зависимости от типа светильника, и и индекса i. Некоторые значения η приведены в табл. 10.5.
Таблица 10.5
Коэффициент использования светового потока
Лампы накаливания | ||||||||||||||||||
Тип светильника | У
У
| У
У
| СЗЛ- 300-1 СЗЛ-300-1 |
ППД-200 200 |
Ш
| С -300 С -300 | ||||||||||||
,% | 70 | 50 | 30 | 70 | 50 | 30 | 70 | 50 | 30 | 70 | 50 | 30 | 70 | 50 | 30 | 70 | 50 | 30 |
,% | 50 | 50 | 10 | 50 | 30 | 10 | 50 | 30 | 10 | 50 | 30 | 10 | 50 | 50 | 30 | 50 | 50 | 30 |
i | Значение коэффициента использования, % | |||||||||||||||||
0,5 0,5 | 22 | 20 | 20 | 28 | 24 | 21 | 29 | 21 | 19 | 26 | 20 | 17 | 22 | 16 | 14 | 22 | 20 | 17 |
1,0 1,0 | 49 | 43 | 38 | 44 | 38 | 34 | 46 | 38 | 33 | 42 | 35 | 30 | 41 | 32 | 29 | 37 | 34 | 31 |
2,0 2,0 | 60 | 57 | 54 | 56 | 52 | 49 | 61 | 53 | 47 | 56 | 48 | 43 | 55 | 45 | 42 | 48 | 44 | 42 |
3,0 3,0 | 66 | 63 | 60 | 62 | 58 | 55 | 67 | 59 | 53 | 61 | 53 | 48 | 61 | 50 | 48 | 53 | 49 | 46 |
4,0 4,0 | 70 | 66 | 64 | 64 | 61 | 58 | 70 | 62 | 56 | 64 | 56 | 51 | 65 | 54 | 51 | 56 | 52 | 49 |
5,0 5,0 | 73 | 69 | 66 | 65 | 62 | 60 | 72 | 65 | 58 | 66 | 58 | 53 | 67 | 56 | 53 | 58 | 53 | 51 |
Лампы люминесцентные | ||||||||||||||||||
,% | 30 | 25 | 20 | 28 | 24 | 21 | 29 | 21 | 19 | 26 | 20 | 17 | 22 | 16 | 14 | 22 | 20 | 17 |
,% | 47 | 42 | 38 | 44 | 38 | 34 | 46 | 38 | 33 | 42 | 35 | 30 | 41 | 32 | 29 | 37 | 34 | 31 |
i | Значение коэффициента использования, % | |||||||||||||||||
0,5 | 30 | 25 | 20 | 28 | 24 | 21 | 29 | 21 | 19 | 26 | 20 | 17 | 22 | 16 | 14 | 22 | 20 | 17 |
1,0 | 47 | 42 | 38 | 44 | 38 | 34 | 46 | 38 | 33 | 42 | 35 | 30 | 41 | 32 | 29 | 37 | 34 | 31 |
2,0 | 62 | 57 | 54 | 56 | 52 | 49 | 61 | 53 | 47 | 56 | 48 | 43 | 55 | 45 | 42 | 48 | 44 | 42 |
3,0 | 67 | 63 | 60 | 62 | 58 | 55 | 67 | 59 | 53 | 61 | 53 | 48 | 61 | 50 | 48 | 53 | 49 | 46 |
4,0 | 70 | 66 | 64 | 64 | 61 | 58 | 70 | 62 | 56 | 64 | 56 | 51 | 65 | 54 | 51 | 56 | 52 | 49 |
5,0 | 72 | 69 | 66 | 65 | 62 | 60 | 72 | 65 | 58 | 66 | 58 | 53 | 67 | 56 | 53 | 58 | 53 | 51 |
По полученному в результате расчета световому потоку Фл выбирают по ГОСТ 2239–79* и ГОСТ 6825–91 ближайшую стандартную лампу и определяют ее необходимую мощность. Световые и электрические параметры некоторых наиболее широко используемых ламп приведены в табл. 10.6 и 10.7. Умножив электрическую мощность лампы на количество светильников , можно определить электрическую мощность всего освещения помещения.
Таблица 10.6
Световой поток ламп накаливания общего назначения
Мощность, | Тип | Световой | Мощность, | Тип | Световой |
Вт | лампы | поток, лм | Вт | лампы | поток, лм |
15 | В | 105 | 150 | Г | 2000 |
25 | В | 2250 | 150 | Б | 2100 |
40 | Б | 400 | 200 | Г | 2800 |
40 | БК | 460 | 200 | Б | 2920 |
60 | Б | 715 | 300 | Г | 4600 |
60 | БК | 790 | 500 | Г | 8300 |
100 | Б | 1350 | 750 | Г | 13100 |
100 | БК | 1450 | 1000 | Г | 18 600 |
Таблица 10.7
Световой поток наиболее распространенных люминесцентных ламп напряжением 220 В
Тип лампы | Световой поток, лм, при мощности, Вт | |||||
15 | 20 | 30 | 40 | 65 | 80 | |
ЛДЦ | 500 | 820 | 1450 | 2100 | 3050 | 3560 |
ЛД | 540 | 920 | 1640 | 2340 | 6575 | 4070 |
ЛХБ | 675 | 935 | 1720 | 2600 | 3820 | 4440 |
ЛБ | 760 | 1180 | 2100 | 3000 | 4550 | 5220 |
При выборе типа лампы допускается отклонение от расчетого светового потока лампы Фл до –10 и +20%. Если такую лампу не удалось подобрать, выбирают другую схему расположения светильников, их тип и повторяют расчет.
Расчет освещения от светильников с люминесцентными лампами целесообразно выполнять, предварительно задавшись типом, электрической мощностью и величиной светового потока ламп. С использованием этих данных необходимое число светильников определяют по формуле
где - число принятых рядов светильников.
Для проверочного расчета общего локализованного и комбинированного освещения, освещения наклонных и вертикальных поверхностей и для проверки расчета равномерного общего освещения горизонтальных поверхностей, когда отраженным световым потоком можно пренебречь, применяют точечный метод.
В основу точечного метода положена формула (расчетная схема изображена на рис. 10.15)
где - сила света в направлении от источника света к расчетной точке А рабочей поверхности, кд (определяется по светотехническим характеристикам источника света и светильника); Н — высота светильника над рабочей поверхностью, м; γ – угол между нормалью к рабочей поверхности и направлением светового потока от источника; k — коэффициент запаса освещенности.
Рис. 10.15. Схема расчета освещения точечным методом
При необходимости расчета освещенности в точке, создаваемой несколькими светильниками, подсчитывают освещенность от каждого из них, а затем эти значения складывает, получая , должно выполняться условие < .
Расчет естественного освещения. Целью расчета естественного освещения является аналитическое определение значения КЕО, что необходимо для правильной расстановки оборудования, определения положения рабочих мест. Расчет производят также для определения достаточности размеров оконных проемов для обеспечения минимально допустимого значения КЕО. Для расчета естественной освещенности могут применяться аналитические методы, но на практике определение значения КЕО в расчетной точке помещения осуществляют с использованием графиков и номограмм (рис. 10.16 и 10.17).
При использовании графических зависимостей расчет КЕО при боковом освещении осуществляют в последовательности, приведенной ниже.
Определяют непосредственным измерением или по строительным чертежам площадь (м2) световых проемов, площадь (м2) освещаемой части пола помещения и находят отношение / .
Определяют глубину (м) помещения от световых проемов до расчетной точки, высоту (м) верхней грани световых проемов (окон) над уровнем рабочей поверхности и находят отношение / .
С использованием графика, изображенного на рис. 10.17, по значениям отношения / и / находят значение КЕО.
Для определения размеров оконных проемов, обеспечивающих требуемое по условиям трудовой деятельности значение КЕО, можно использовать график, изображенный на рис. 10.17. По графику на пересечении вычисленного значения / (точка А) и необходимой величины КЕО (точка Б) определяют требуемое значение / (точка В), выраженное в процентах. Далее вычисляют требуемую площадь световых проемов .
Рис. 10.16. График для определения КЕО по значению площади светового проема и освещаемой площади пола
Графики, представленные на рис. 10.17, построены для окон с двумя слоями листового оконного стекла в спаренных металлических открывающихся переплетах. Если проектом предусмотрены другие типы заполнителей световых проемов, то найденное по графику, приведенному на рис. 10.17, значение КЕО необходимо умножить на поправочный коэффициент k, значения которого для наиболее распространенных заполнителей световых проемов представлены в табл. 10.8.
Таблица 10.8
Тип остекления | k |
Однослойное остекление в стальных одинарных глухих переплетах | 1,26 |
То же в открывающихся переплетах | 1,05 |
Один слой оконного стекла в деревянных открывающихся переплетах | 1,05 |
Два слоя оконного стекла в стальных открывающихся переплетах | 0,75 |
Пустотелые стеклянные блоки | 0,70 |
Рис. 10.17. График определения КЕО по глубине помещения и высоте световых проемов
Для определения значения КЕО может также применяться предложенный A.M. Данилюком графический метод, пригодный при диффузном распространении светового потока. Метод сводится к тому, что полусферу небосвода разбивают на 10000 участков равной световой активности и подсчитывают, какое число этих участков видно из расчетной точки помещения через световой проем, т.е. графически определяют, какая часть светового потока от всей небесной полусферы непосредственно попадает в расчетную точку.
Число видимых через световой проем участков небосклона находят при помощи двух графиков (рис. 10.18), представляющих собой пучок проекций лучей, соединяющих центр полусферы небосвода с участками равной световой активности по высоте (график I) и по ширине (график II) светового проема.
Для расчета по методу Данилюка на листе бумаги выполняют разрезы помещения: поперечный и в плане — в масштабе, соответствующем масштабу графиков. Затем накладывают график I на поперечный разрез так, чтобы основание графика совпадало со следом расчетной плоскости рабочей поверхности, а полюс графика с расчетной точкой М, и определяют, число лучей , проходящих через контур светового проема. График II накладывают на план помещения так, чтобы его основание было параллельно плоскости расположения светового проема и было расположено от нее на расстоянии, равном расстоянию от расчетной точки до середины светового проема по высоте на поперечном разрезе. При этом полюс графика должен находиться на пересечении его основания с горизонтальной линией, проведенной на плане помещения через расчетную точку. Подсчитывают число лучей , проходящих через контур светового проема по ширине. Значение КЕО (%) в расчетной точке помещения определяют по формуле
Рис 10.18. Схема для расчета естественного освещения
- Глава 1 принципы и понятия ноксологии
- Глава 2 опасности и их показатели
- 2.1. Возникновение и основы реализации опасностей
- 2.2. Закон толерантности, опасные и чрезвычайно опасные воздействия.
- 2.3. Поле опасностей
- 2.4. Качественная классификация (таксономия) опасностей.
- Паспорт опасности сброса жидких отходов гальванического цеха (участка)
- Паспорт опасности лэп
- 2.5. Количественная оценка опасностей
- Нормы освещенности по СанПиН 2.2.1/1278—03 (извлечения — для жилых помещений)
- Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны (пдКрз) по гост 12.1.005-88 (извлечения)
- Предельно допустимые концентрации некоторых вредных веществ, мг/м3, в атмосферном воздухе населенных мест по гост 12.1.005—88 (извлечения)
- Характерные значения индивидуального риска гибели людей от естественных и техногенных факторов
- 2.6. Показатели негативного влияния реализованных опасностей
- Зависимость спж от ввп
- Глава 3 Естественные и естественно-техногенные опасности
- 3.1. Повседневные абиотические факторы
- 3.2. Стихийные явления
- Глава 4 антропогенные опасности
- 4.1. Виды взаимосвязей человека-оператора с технической системой
- 4.2. Восприятие внешних воздействий и ошибочные реакции человека
- Глава 5 техногенные опасности
- 5.1.1. Вредные вещества
- Токсикологическая классификация вредных веществ
- Отравления протекают в острой, подострой и хронической формах.
- Ниже приведена классификация производственных вредных веществ по степени опасности (табл. 5.2).
- Различают несколько типов комбинированного действия ядов: аддитивного, потенцированного, антагонистического, независимого действия.
- Примером аддитивности является наркотическое действие смеси углеводородов (бензола и изопропилбензола).
- 5.1.2. Вибрация
- Характеристики направленности излучения шума машиной.
- 5.1.4. Инфразвук
- 5.1.5. Ультразвук
- 5.1.6. Электромагнитные поля и излучения
- Применение электромагнитных полей и излучений
- 5.1.7. Лазерное излучение
- При диффузном отражении энергетическая яркость источника связана с энергетическим потоком лазерного излучения соотношением:
- Зоны опасного влияния современных лазерных установок обычно ограничены размерами производственного помещения.
- По определению:
- Медицинское облучение 51,5
- Природный радиационный фон 43,4
- Ядерные испытания 2,5
- Стройматериалы 2,0
- Полеты в авиалайнерах 0,3
- Телевизоры 0,28
- Атомная энергетика 0,08
- 5.1.9. Электрический ток
- 5.1.10. Механическое травмирование
- 5.2 Региональные и глобальные воздействия
- 5.2.1. Воздействие на атмосферу
- Приоритетный список городов с наибольшим уровнем загрязнения воздуха в 2004 г.
- Выпадение тяжелых металлов на етр в начале XXI в.
- Вклад парниковых газов
- 5.2.2. Воздействие на гидросферу
- Состав гидросфера
- Сброс загрязняющих веществ со сточными водами
- Воздействие на литосферу
- Города России с разной категорией опасности загрязнения почв металлами
- Источники и вещества, загрязняющие почву
- 5.3. Чрезвычайные опасности
- Основные параметры отечественных ядерных реакторов
- Основные причины аварий на аэс
- Основные характеристики ахов
- Масштабы гибели пассажиров на транспорте
- Чрезвычайные ситуации, происшедшие на территории рф
- Глава 6 масштабы негативного влияния опасностей на человека и природу
- 6.1. Опасности производственной и бытовой среды
- Зависимость состояния человека от изменения параметров микроклимата
- 6.2. Региональные и глобальные опасности
- Отдельные случаи чрезмерно высоких загрязнений компонент биосферы и их последствия
- Влияние состава атмосферного воздуха на здоровье людей
- 6.3. Чрезвычайные опасности
- Структура негативного влияния природных и техногенных чс
- 6.4. Смертность населения от внешних причин
- Глава 7 анализ и прогнозирование влияния техносферных опасностей на человека
- Классы условий труда в зависимости от содержания в воздухе рабочей зоны вредных веществ
- Классы условий труда в зависимости от уровней шума, локальной и общей вибрации, инфра- и ультразвука на рабочем месте
- Шкала оценки ущерба здоровью в зависимости от класса вредности
- Определение ущерба здоровью на основании общей оценки условий труда
- Определение ущерба здоровью по показателю тяжести трудового процесса
- Глава 8 безопасность человека, селитебных зон и природы
- 8.1. Понятие безопасности объекта защиты
- 8.2.Взаимодействие источников опасностей, опасных зон и объектов защиты
- В техносфере.
- 8.3. Общие тенденции достижения бжд и зос
- 8.4. Идентификация опасностей техногенных источников
- 8.4.1. Идентификация вредных воздействий
- 8.4.2. Идентификация травмоопасных воздействий
- Расчетные расстояния, на которых возможно нанесение ущерба здоровью населения при хранении веществ на опо
- Удаленность опо от населенных пунктов
- Радиусы зон поражения при авариях
- 8.4 Плотность населения в различных зонах
- 8.5 Значения величины техногенного риска
- 8.5. Защитное зонирование
- Нормативные и расчетные размеры сзз по фактору вредных выбросов и шуму
- 8.6. Специальная техника для защиты от опасностей
- Источника и приемника с разных сторон от зу
- Источника и приемника с разных сторон от зу
- 8.8. Малоотходные технологии и производства
- Этапы развития стратегий по обращению с отходами
- 8.9, Наилучшие из доступных современных технологий
- 8.10. Комплексная оценка безопасности техногенного объекта ижизненного пространства
- 8.11. Стратегия глобальной безопасности. Устойчивое развитие
- Глава 9
- Глава 10 защита человека от естественных опасностей
- 10.1. Защита от переменных климатических воздействий
- 10.1.1. Защита от воздействия высоких температур
- 10.1.2. Защита от воздействия низких температур
- Средства для восстановления функционального состояния человека после нахождения в холодной воде
- 10.1.3. Вентиляция и кондиционирование
- 10.1.4. Отопление помещений
- 10.2. Освещение
- Нормы освещенности при искусственном освещении по сНиП 23-05-95 (извлечения)
- Нормы освещенности по СанПиН 2.2.1/1278—03 (извлечения — для образовательных учреждений)
- По методу Данилюка
- 10.3. Водоподготовка и водопользование
- 10.4. Требования к пищевым продуктам
- Пдк токсичных металлов в продуктах питания по СанПиН
- Глава 11 защита человека от опасностей технических систем и технологий
- 11.1. Защита от выбросов токсичных веществ в атмосферный воздух помещений
- 11.2. Защита от вибраций
- Гигиенические нормы вибраций по сн 2.2.4/ 2.1.8.566 – 96 (извлечения)
- Виброизоляции
- Виброизоляторы:
- Гасителем колебаний
- На фундамент:
- Элементами:
- 11.3. Защита от акустических воздействий
- Предельно допустимые уровни инфразвука на рабочих местах и на территории жилой застройки
- Допустимые уровни воздействия звукового давления на рабочих местах при воздействии воздушного ультразвука
- Допустимые уровни виброскорости и ее пиковые значения при контактном воздействии ультразвука
- 11.4. Защита от неионизирующих электромагнитных полей и излучений
- Предельно допустимые уровни эми рч, в/м, для населения
- Основные характеристики радиопоглощающих материалов
- 11.5. Защита от электромагнитных полей и излучений оптического диапазона
- 11.5.1. Защита от инфракрасного излучения Нормирование ик-излучения.
- 11.5.2. Защита от лазерного излучения
- 11.6. Защита от ионизирующих излучений
- Мощность эквивалентной дозы, используемая при проектировании защиты от внешнего ионизирующего излучения
- 11.7. Защита пользователей компьютерной техники
- 11.8. Технические способы и средства обеспечения электробезопасности
- 11.9. Защита от механического травмирования
- Смысловые значения и области применения сигнальных цветов и соответствующие им контрастные цвета.
- Глава 12 минимизация антропогенных опасностей
- 12.1. Обучение и инструктаж
- 12.2. Подготовка операторов
- 12.3. Организация безопасного трудового процесса
- 12.4. Особенности безопасной трудовой деятельности женщин и подростков
- Глава 13 защита урбанизированных территорий и природных зон от опасного воздействия техносферы
- 13.1. Защита атмосферного воздуха от выбросов
- 13.2. Защита гидросферы от стоков
- 13.3. Защита земель и почвы от загрязнения
- Дкп для почвы по гн 6229-91
- Удельны затраты различных технеологий обезвреживания тбо, долл/т
- 13.4. Защита от радиоактивных отходов
- 13.4. Защита от радиоактивных отходов
- Глава 14 защита от техногенных чрезвычайных опасностей
- 14.1. Общие меры защиты
- Предельное количество вещества, допустимое для промышленного объекта
- Вид и допустимое количество вещества, находящегося на объекте
- 14.2. Защита от пожаров и взрывов
- Глава 11 239
- Глава 14 392
- Глава 16 481
- Глава 17 484
- Значения критической плотности теплового потока
- 14.2.2. Защита на взрывоопасных объектах
- Основные параметры взрыва аэрозолей
- Степень разрушения коммунально-энергетических и технологических сетей
- Степень разрушения коммунально-энергетических и технологических сетей
- 14.2.3. Методология оценки пожаро-, взрывоопасности помещений и зданий
- Удельная пожарная нагрузка помещений в1—в4
- Степени огнестойкости зданий
- 14.3. Защита на химически опасных объектах
- 14.3. Защита на химически опасных объектах
- 14.3. Защита на химически опасных объектах
- Глава 14. Защита от техногенных чрезвычайных опасностей
- 14.3. Защита на химически опасных объектах
- 14.4. Защита на радиационно опасных объектах
- Классификация радиационных аварий (шкала пче5)
- Фазы радиационной аварии и их характеристика
- Критерии для принятия решений об отселении ограничении потрепления загрязненных пищевых продукто
- Критерии для принятия решений об ограничении потребления загрязненных продуктов в первый год после возникновения аварии
- Радиусы зоны упреждающей эвакуации (зона № 1)
- Меры по защите населения (по фазам аварии)
- Глава 15 Защита от стихийных явлений
- Характеристика землетрясений
- Глава 16 защита от терроризма
- Глава 17 защита от глобальных воздействий
- Ядерные взрывы, произведенные в ссср и сша
- Глава 18 мониторинг и контроль опасностей
- 18.1. Мониторинг окружающей среды.
- 18.2. Мониторинг источника опасностей
- Распределение происшествий, не приведших к авариям или инцидентам, по основным категориям (компания «Халлибуртон», Россия, июнь ― декабрь 2002 г.)
- 18.3. Мониторинг здоровья работающих и населения
- 19 Глава государственное управление
- 19.1. Структура управления
- 19.2. Безопасность труда
- 19.3. Охрана окружающей среды
- 19.4. Защита в чрезвычайных ситуациях
- 19.5. Международное сотрудничество