Степень разрушения коммунально-энергетических и технологических сетей
Здания и сооружения | Избыточное давление ударной волны, кПа | |||||
1000-200 | 200-100 | 100-50 | 50-30 | 30-20 | 20-10 | |
Жилые, производственные и общественные антисейсмической конструкции | а | б | в | г | д |
|
Промышленные с металлическим или железобетонным каркасом |
|
| а | б | в | в, г |
Малоэтажные каменные |
|
| а | б | в | г,д |
Многоэтажные жилые дома с несущими каменными стенами |
|
|
| а | б, в | г, д |
Деревянные |
|
|
|
| а | а, б |
Сооружения и сети коммунально-энергетического хозяйства и связи:электростанции |
|
|
| а, б | в | г |
Подземные резервуары |
| а, б | в | г | д |
|
Наземные трубопроводы |
| а, б | б, в | в, г | г | д |
Водонапорные башни |
|
| а, б | б, в | в | г |
Воздушные линии электропередач |
| а | б | в | г | г,д |
Окончание табл. 14.7
Здания | Избыточное давление ударной волны, кПа | |||||
и сооружения | 1000-200 | 200-100 | 100-50 | 50-30 | 30-20 | 20-10 |
Металлические мосты пролетом, м до: |
|
|
|
|
|
|
45 | а, б | б, в | г | д |
|
|
100-150 |
| а, в | в | г.д |
|
|
Железобетонные мосты пролетом, м до: |
|
|
|
|
|
|
10 |
| а, в | в, г | д |
|
|
20-25 |
| а, б | б, в | д |
|
|
Железнодорожные пути | а, в | г | д |
|
|
|
Автомобильные дороги с твердым покрытием | в, г |
|
|
|
|
|
Метрополитен мелкого заложения | а, б | в | г |
|
|
|
Машины и оборудование: металлообрабатывающие станки |
| а | в | г | д |
|
Грузовые автомобили |
|
| а | б | в, г | г,д |
Условные обозначения: а — полные разрушения; б — сильные разрушения; в — средние разрушения; г — слабые разрушения; д — повреждения.
Средства защиты от взрывов. Рассмотрим основные способы защиты людей и технологического оборудования от взрывов.
Взрывозащита людей при использовании ВВ. Одним из основных способов защиты людей от взрывов являются защитные сооружения, предназначенные для хранения и использования В В в технологических целях. Другим видом защиты являются защитные сооружения: убежища и укрытия. Последние предназначены для защиты людей от негативного воздействия взрывов и пожаров. Убежища по своим защитным свойствам подразделяются на классы в зависимости от величины давления ударной волны.
Для принятия решения по местоположению убежищ и укрытий необходимо оценивать степень заваливаемости территорий застройки при воздействии избыточных давлений при взрыве. Дальность разлета обломков зданий при взрыве зависит от высоты здания и избыточного давления взрыва. Так, для 8—10-этажных жилых зданий фронтальный разлет осколков достигает 56, а боковой — 21м при АР = 100 к Па.
Взрывозащита технологического оборудования. Взры- возащита систем повышенного давления обеспечивается следующими способами: организационно-техническими мероприятиями; разработкой инструктивных материалов, регламентов, норм и правил ведения технологических процессов; организацией обучения и инструктажа обслуживающего персонала; осуществлением контроля и надзора за соблюдением норм технологического режима, правил и норм техники безопасности, пожарной безопасности и т.п. Кроме того, оборудование повышенного давления должно быть оснащено системами взрывозащиты, которые предполагают:
применение гидрозатворов, огнепреградителей, инертных газов или паровых завес;
защиту аппаратов от разрушения при взрыве с помощью устройств аварийного сброса давления (предохранительные мембраны и клапаны, быстродействующие задвижки).
Взрывозащита трубопроводов. Чтобы внешний вид трубопровода указывал на свойства транспортируемого вещества, введена их опознавательная окраска:
вода — зеленый;
пар — красный;
воздух — синий;
горючие и негорючие газы — желтый;
кислоты — оранжевый;
щелочи — фиолетовый; горючие и негорючие
жидкости — коричневый;
прочие вещества — серый.
Для выделения вида опасностей на трубопроводы наносят предупреждающие (сигнальные) цветные кольца, количество которых определяет степень опасности. Так, на трубопроводы взрывоопасных, огнеопасных, легковоспламеняющихся веществ наносят красные кольца, безопасных или нейтральных веществ — зеленые, токсичных веществ — желтые. Для обозначения глубокого вакуума, высокого давления, наличия радиации используют также желтый цвет.
Все трубопроводы подвергают гидравлическим испытаниям при пробном давлении на 25% выше рабочего, но не менее 0,2 МПа.
Кроме испытаний водой на прочность, газопроводы, а также трубопроводы для токсичных газов испытывают на герметичность воздухом при пробном давлении, равном рабочему. Отсутствие утечки воздуха из соединений проверяют мыльным раствором или погружением узлов в ванну с водой.
Газопроводы прокладывают с небольшим уклоном в сторону движения газа, а буферную емкость снабжают в нижней части спускной трубой с краном для систематического удаления водяного конденсата и масла. Паропроводы снабжают конденсатоотводчиками, которые позволяют предотвратить возникновение гидравлических ударов и пробок. Во избежание возникновения напряжений от тепловых деформаций, особенно в наземных газопроводах, устраивают специальные компенсаторы в виде п-образного участка.
Трубопроводы со сжиженными газами прокладывают на расстоянии не менее 0,5 м от трубопроводов с горячим рабочим телом, при этом последние изолируют, а трубопроводы с легко замерзающими газами монтируют рядом с паропроводами и трубопроводами горячей воды. Для предотвращения ожогов кислотами и щелочами фланцевые соединения трубопроводов закрывают защитными кожухами.
Трубопроводы для транспортирования жидкого и газообразного кислорода периодически, а также после каждого ремонта обезжиривают. Для обезжиривания используют тет- рахлорид углерода, трихлорэтилен или тетрахлорэтилен.
Трубопроводы, по которым в зону реакции к аппарату или устройству подается горючее и окислитель, оборудуют специальными устройствами: автоматическими задвижками, обратными клапанами, гидравлическими затворами, огне- и взрывопреградителями.
Стационарные сосуды, баллоны для хранения и перевозки сжатых, сжиженных и растворенных газов. Баллоны бывают малой (0,4—12 л), средней (20—50 л) и большой (80—500 л) вместимости. Баллоны малой и средней вместимости изготовляют из углеродистой стали на рабочее давление 10, 15 и 20 МПа, из легированной стали — на давление15 и 20 МПа. У горловины каждого баллона на сферической части выбивают следующие данные: товарный знак предприятия-изготовителя, дату (месяц и год) изготовления (последнего испытания) и год следующего испытания; вид термообработки (нормализация, закалка с отпуском); рабочее и пробное гидравлическое давление, МПа; вместимость баллона, л; массу баллона, кг; клеймо ОТК; обозначение действующего стандарта.
Наружная поверхность баллонов окрашивается в определенный цвет, на нее также наносится соответствующая надпись и сигнальная полоса. Окраска баллонов для наиболее часто используемых промышленных газов приведена в табл. 14.8.
Таблица 14.8 Окраска баллонов промышленных газов
Газ | Окраска баллонов | Надпись | Цвет надписи | Цвет полосы |
Азот | Черная | Азот | Желтый | Коричневый |
Аммиак | Желтая | Аммиак | Черный | Коричневый |
Аргон, чистый | Серая | Аргон, чистый | Зеленый | Зеленый |
Ацетилен | Белая | Ацетилен | Красный | Красный |
Водород | Темно-зеленая | Водород | Красный | Красный |
Воздух | Черная | Сжатый воздух | Белый | Белый |
Гелий | Коричневая | Гелий | Белый | Белый |
Кислород | Голубая | Кислород | Черный | Черный |
Диоксид углерода | Черная | Диоксид углерода | Желтый | Желтый |
Для горючих и негорючих газов, не обозначенных в Правилах ус тройства и безопасной эксплуатации сосудов, работающих под давлением ПБ 03-576—2003, предусмотрена гамма цветов, приведенная в табл. 14.9.
Таблица 14.9
Газ | Окраска баллонов | Надпись | Цвет надписи | Цвет полосы |
Все другие горючие газы | Красная | Наименование газа | Белый | Белый |
Все другие негорючие газы | Черная | То же | Желтый | Желтый |
Сигнальная окраска баллонов и цистерн позволяет исключить образование смеси «горючее — окислитель» при заполнении емкостей рабочим телом, для которого они не предназначен ы.
Для предотвращения проникновения в опорожненный баллон посторонних газов, а также для определения (в необходимых случаях), какой газ находится в баллоне, или герметичности баллона и его арматуры заводы-наполнители принимают опорожненные баллоны с остаточным давлением не менее 0,05 МПа, а баллоны для растворенного ацетилена — не менее 0,05 и не более 0,1 МПа.
Взрыв ацетиленовых баллонов может быть вызван старением пористой массы (активированного угля в ацетоне), в которой растворяется ацетилен. Образование смеси «горючее — окислитель» в кислородных баллонах чаще всего связано с попаданием в его вентиль масел; в водородных — с загрязнением их кислородом, а также с появлением окалины.
Действующие в настоящее время ПБ 03-576—2003 распространяются:
на сосуды, работающие под давлением воды с температурой выше 115 °С или другой жидкости с температурой, превышающей температуру кипения при давлении 0,07 МПа;
сосуды, работающие под давлением пара или газа свыше 0,07 МПа;
баллоны, предназначенные для транспортирования и хранения сжатых, сжиженных и растворенных газов под давлением свыше 0,07 МПа;
цистерны и бочки для транспортирования и хранения сжиженных газов, давление паров которых при температуре до 50 °С превышает давление 0,07 МПа;
цистерны и сосуды для транспортирования или хранения сжатых, сжиженных газов, жидкостей и сыпучих тел, в которых давление выше 0,07 МПа создается периодически для их опорожнения;
барокамеры.
Для обеспечения безопасной и безаварийной эксплуатации сосуды и аппараты, работающие под давлением, должны подвергаться техническому освидетельствованию после монтажа и пуска в эксплуатацию и периодически в процессе эксплуатации, а в необходимых случаях и внеочередному освидетельствованию.
Сроки и объемы освидетельствований сосудов и баллонов, зарегистрированных и не зарегистрированных в органах Ростехнадзора, устанавливаются в зависимости от условий эксплуатации (скорость физико-химических превращений) и типа сосуда.
При гидравлических испытаниях емкость заполняют водой, после чего давление воды плавно повышают до значений пробного давления, указанного в табл. 14.10.
Вода должна иметь температуру не ниже 5 и не выше 40 °С, если иное не оговорено в паспорте на сосуд. Разность температур стенки сосуда и окружающего воздуха во время испытаний не должна вызывать конденсации влаги на поверхности стенок сосуда. Использование сжатого воздуха или другого газа для подъема давления не допускается.
Давление в испытываемом сосуде контролируется двумя манометрами одного типа, предела измерения, одинаковых классов точности, цены деления. Время выдержки пробного давления устанавливается разработчиком и обычно определяется толщиной стенки сосуда. Так, при толщине стенки до 50 мм оно составляет 10 мин, при 50—100 мм — 20 мин, свыше 100 мм — 30 мин. Для литых неметаллических и многослойных сосудов независимо от толщины стенки время выдержки составляет 60 мин.
Таблица 14.10 Давление при гидравлических испытаниях
Типы сосудов | Пробное давление. МПа | Примечание |
Кроме литых | Рпр= 1,25КРрас | - |
Литые | Рпр= 1,50КРрас | - |
Из неметаллических материалов | Рпр= 1,3 <КРрас | Ударная вязкость материала более 20 Дж/см2 |
Окончание табл. 14.10
Типы сосудов | Пробное давление. МПа | Примечание |
Из неметаллических материалов | Рпр= 1,60/СРраг | Ударная вязкость материала менее 20 Дж/см2 |
Криогенные | Рпр =1,25Ррас-0,1 МПа | Наличие вакуума в изоляционном пространстве |
Металлопласти ковые | Рпр=1,25Км(1-Км) х РрасК | — |
Примечание. К =ό20/ όt, где ст20, ό, — допустимое напряжение для материала сосуда или его элемента соответственно при 20 "С и расчел юй температуре, МПа; Ррас — расчетное давление, МПа; Км — отношение массы металлоконструкции к общей массе сосуда; а = 1,3 — для неметаллических материалов с ударной вязкостью более 20 Дж/см2 и а = 1,6 для неметаллических материалов с ударной вязкостью 20 Дж/см2 и менее.
После выдержки под пробным давлением оно снижается до расчетного, при котором производят осмотр наружной поверхности сосуда, всех его разъемных и сварных соединений. Сосуд считается выдержавшим гидравлическое испытание, если при осмотре не обнаружено течи, трещин, слезок потения в сварных соединениях и на основном металле; течи в разъемных соединениях; видимых остаточных деформаций, падения давления по манометру.
Гидравлическое испытание допускается заменять пневматическим при условии контроля за этим испытанием методом акустической эмиссии или другим, согласованным Ростех- надзором.
Техническое освидетельствование работающих под давлением установок, зарегистрированных в органах Ростехнадзора, производит технический инспектор, а установок, не зарегистрированных в этих органах, — лицо, на которое приказом по предприятию возложен надзор за безопасностью эксплуатации установок, работающих под давлением.
Сжиженные газы хранят и перевозят в стационарных и транспортных сосудах — цистернах (сосуды для сжиженных газов), которые в случае хранения криогенных жидкостей снабжены высокоэффективной тепловой изоляцией.
Стационарные резервуары изготовляют объемом до 500 тыс. л и более. В зависимости от конструкции они бывают цилиндрической (горизонтальные и вертикальные) и шарообразной формы.
Транспортные сосуды (цистерны) обычно имеют объем до 35 тыс.л. Принципиальная схема такого резервуара представлена на рис. 14.6. Низкие температуры, при которых эксплуатируются внутренние сосуды криогенных резервуаров и цистерн, накладывают ограничения на материалы, используемые при их изготовлении.
В промышленности используют газгольдеры низкого и высокого давления. Газгольдеры низкого давления — это сосуды переменного объема, давление газа в которых практически всегда остается постоянным. Из газгольдеров высокого давления расходуемый газ подается сначала на редуктор, а затем к потребителю. Газгольдеры высокого давления обычно собирают из баллонов большего объема, изготовляемых на рабочее давление до 40 МПа.
Для управления работой и обеспечения безопасных условий эксплуатации сосуды в зависимости от назначения должны быть оснащены:
- запорной или запорно-регулирующей арматурой;
- приборами для измерения давления;
Рис. 14.6. Криогенный резервуар:
1 — кожух; 2 — изоляция; 3 — сосуд для криогенной жидкости; 4 - предохранительная мембрана; 5 — змеевик; 6 — дренажная труба;
7 — предохранительный клапан; 8 — вентиль; 9 — заправочный вентиль; 10 — манометр; 11 — указатель уровня; 12 — вентиль для слива; 13 — испаритель; 14 — пробка для продувки отстойника
- приборами для измерения температуры;
- предохранительными устройствами;
- указателями уровня жидкости.
Арматура должна иметь следующую маркировку:
- наименование или товарный знак изготовителя;
- условный проход;
-условное давление, МПа (допускается указывать рабочее давление и допустимую температуру);
- направление потока среды;
- марку материала корпуса.
На маховике запорной арматуры должно быть указано направление его вращения при открывании или закрывании арматуры. Арматура с условным проходом более 20 мм, изготовленная из легированной стали или цветных металлов, должна иметь паспорт установленной формы, в котором должны быть указаны данные по химсоставу, механическим свойствам, режимам термообработки и результатам контроля качества изготовления неразрушающими методами.
Каждый сосуд и самостоятельные полости с разными давлениями должны быть снабжены манометрами прямого действия. Манометр устанавливается на штуцере сосуда или трубопроводе между сосудом и запорной арматурой. Манометры должны иметь класс точности не ниже 2,5 и 1,5 при рабочем давлении сосуда соответственно до и свыше 2,5 МПа. Манометр должен выбираться с такой шкалой, чтобы предел измерения рабочего давления находился во второй трети шкалы. На шкале манометра владельцем сосуда должна быть нанесена красная черта, указывающая рабочее давление в нем. Манометр должен быть установлен так, чтобы его показания были отчетливо видны обслуживающему персоналу. Номинальный диаметр корпуса манометров, устанавливаемых на высоте до 2 м от уровня площадки наблюдения за ним, должен быть не менее 100 мм, на высоте от 2 до 3 м — не менее 160 мм. Установка манометров на высоте более 3 м от уровня площадки не разрешается.
Между манометром и сосудом должен быть установлен трехходовый кран или заменяющее его устройство, позволяющее проводить периодическую проверку манометра с помощью другого контрольного прибора.
Проверка манометров с их опломбированием и клеймением должна производиться не реже одного раза в 12 месяцев. Кроме того, не реже одного раза в 6 месяцев владельцем сосуда должна производиться дополнительная проверка рабочих манометров другими контрольными приборами.
Сосуды, работающие при изменяющейся температуре стенок, должны быть снабжены приборами для контроля скорости и равномерности прогрева по длине и высоте сосуда и реперами для контроля тепловых перемещений.
Необходимость оснащения сосудов указанными приборами и реперами, а также допустимая скорость прогрева и охлаждения сосудов определяются разработчиком проекта и указываются изготовителем в паспортах сосудов или инструкциях по монтажу и эксплуатации.
Каждый сосуд должен быть снабжен предохранительными устройствами от увеличения давления выше допустимого значения.
В качестве предохранительных устройств применяются:
пружинные предохранительные клапаны;
- рычажно-грузовые предохранительные клапаны;
- импульсные предохранительные устройства, состо-я- щие из главного предохранительного клапана и управля-ю- щего импульсного клапана прямого действия;
- предохранительные устройства с разрушающимися мембранами (предохранительные мембраны);
- другие устройства, применение которых согласовано с Ростехнадзором.
Распространенным средством защиты технологического оборудования от разрушения при взрывах являются предохранительные мембраны (разрывные, ломающиеся, срезные, хлопающие, специальные) и взрывные клапаны (рис. 14.7 и 14.8).
Достоинством предохранительных мембран является предельная простота их конструкции, что характеризует их как самые надежные из всех существующих средств взрывоза- щиты. Кроме того, мембраны практически не имеют ограничений по пропускной способности. Существенным недостатком предохранительных мембран является то, что после срабатывания защищаемое оборудование остается открытым, что приводит к остановке технологического процесса и к выбросу в атмосферу всего содержимого аппарата. При разгерметизации технологического оборудования нельзя исключить возможность вторичных взрывов, которые бывают обусловлены подсосом атмосферного воздуха внутрь аппарата через открытое отверстие мембраны.
Использование на технологическом оборудовании взрывных клапанов дает возможность устранить эти негативные последствия, так как после срабатывания и сброса отверстие вновь закрывается и таким образом не вызывает необходимости немедленной остановки оборудования и проведения восстановительных работ. К недостаткам взрывных клапанов следует отнести их большую инерционность по сравнению с мембранами, сложность конструкции, а также недостаточную герметичность, ограничивающую область их применения (они могут использоваться для взрывозащиты оборудования, работающего при нормальном давлении).
Наиболее распространенным средством защиты технологического оборудования от взрыва являются предохранительные клапаны. Однако и они имеют ряд существенных недостатков, в основном определяющихся большой инерционностью подвижных деталей клапанов.
Расчет и подбор предохранительного клапана заключается в определении количества газа (жидкости), вышедшего из сосуда, аппарата, или площади проходного сечения предохранительного устройства, а также расчете времени истечения при заданном конечном давлении. Давление Ртах защищаемой емкости не должно превышать значений, указанных ниже:
Ррас МПа………. <0,3 <6,0 >6,0
Рmax МПа …………… <Ррас (+0,05) < 1,15 Ррас <1,1 Ррас
- Глава 1 принципы и понятия ноксологии
- Глава 2 опасности и их показатели
- 2.1. Возникновение и основы реализации опасностей
- 2.2. Закон толерантности, опасные и чрезвычайно опасные воздействия.
- 2.3. Поле опасностей
- 2.4. Качественная классификация (таксономия) опасностей.
- Паспорт опасности сброса жидких отходов гальванического цеха (участка)
- Паспорт опасности лэп
- 2.5. Количественная оценка опасностей
- Нормы освещенности по СанПиН 2.2.1/1278—03 (извлечения — для жилых помещений)
- Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны (пдКрз) по гост 12.1.005-88 (извлечения)
- Предельно допустимые концентрации некоторых вредных веществ, мг/м3, в атмосферном воздухе населенных мест по гост 12.1.005—88 (извлечения)
- Характерные значения индивидуального риска гибели людей от естественных и техногенных факторов
- 2.6. Показатели негативного влияния реализованных опасностей
- Зависимость спж от ввп
- Глава 3 Естественные и естественно-техногенные опасности
- 3.1. Повседневные абиотические факторы
- 3.2. Стихийные явления
- Глава 4 антропогенные опасности
- 4.1. Виды взаимосвязей человека-оператора с технической системой
- 4.2. Восприятие внешних воздействий и ошибочные реакции человека
- Глава 5 техногенные опасности
- 5.1.1. Вредные вещества
- Токсикологическая классификация вредных веществ
- Отравления протекают в острой, подострой и хронической формах.
- Ниже приведена классификация производственных вредных веществ по степени опасности (табл. 5.2).
- Различают несколько типов комбинированного действия ядов: аддитивного, потенцированного, антагонистического, независимого действия.
- Примером аддитивности является наркотическое действие смеси углеводородов (бензола и изопропилбензола).
- 5.1.2. Вибрация
- Характеристики направленности излучения шума машиной.
- 5.1.4. Инфразвук
- 5.1.5. Ультразвук
- 5.1.6. Электромагнитные поля и излучения
- Применение электромагнитных полей и излучений
- 5.1.7. Лазерное излучение
- При диффузном отражении энергетическая яркость источника связана с энергетическим потоком лазерного излучения соотношением:
- Зоны опасного влияния современных лазерных установок обычно ограничены размерами производственного помещения.
- По определению:
- Медицинское облучение 51,5
- Природный радиационный фон 43,4
- Ядерные испытания 2,5
- Стройматериалы 2,0
- Полеты в авиалайнерах 0,3
- Телевизоры 0,28
- Атомная энергетика 0,08
- 5.1.9. Электрический ток
- 5.1.10. Механическое травмирование
- 5.2 Региональные и глобальные воздействия
- 5.2.1. Воздействие на атмосферу
- Приоритетный список городов с наибольшим уровнем загрязнения воздуха в 2004 г.
- Выпадение тяжелых металлов на етр в начале XXI в.
- Вклад парниковых газов
- 5.2.2. Воздействие на гидросферу
- Состав гидросфера
- Сброс загрязняющих веществ со сточными водами
- Воздействие на литосферу
- Города России с разной категорией опасности загрязнения почв металлами
- Источники и вещества, загрязняющие почву
- 5.3. Чрезвычайные опасности
- Основные параметры отечественных ядерных реакторов
- Основные причины аварий на аэс
- Основные характеристики ахов
- Масштабы гибели пассажиров на транспорте
- Чрезвычайные ситуации, происшедшие на территории рф
- Глава 6 масштабы негативного влияния опасностей на человека и природу
- 6.1. Опасности производственной и бытовой среды
- Зависимость состояния человека от изменения параметров микроклимата
- 6.2. Региональные и глобальные опасности
- Отдельные случаи чрезмерно высоких загрязнений компонент биосферы и их последствия
- Влияние состава атмосферного воздуха на здоровье людей
- 6.3. Чрезвычайные опасности
- Структура негативного влияния природных и техногенных чс
- 6.4. Смертность населения от внешних причин
- Глава 7 анализ и прогнозирование влияния техносферных опасностей на человека
- Классы условий труда в зависимости от содержания в воздухе рабочей зоны вредных веществ
- Классы условий труда в зависимости от уровней шума, локальной и общей вибрации, инфра- и ультразвука на рабочем месте
- Шкала оценки ущерба здоровью в зависимости от класса вредности
- Определение ущерба здоровью на основании общей оценки условий труда
- Определение ущерба здоровью по показателю тяжести трудового процесса
- Глава 8 безопасность человека, селитебных зон и природы
- 8.1. Понятие безопасности объекта защиты
- 8.2.Взаимодействие источников опасностей, опасных зон и объектов защиты
- В техносфере.
- 8.3. Общие тенденции достижения бжд и зос
- 8.4. Идентификация опасностей техногенных источников
- 8.4.1. Идентификация вредных воздействий
- 8.4.2. Идентификация травмоопасных воздействий
- Расчетные расстояния, на которых возможно нанесение ущерба здоровью населения при хранении веществ на опо
- Удаленность опо от населенных пунктов
- Радиусы зон поражения при авариях
- 8.4 Плотность населения в различных зонах
- 8.5 Значения величины техногенного риска
- 8.5. Защитное зонирование
- Нормативные и расчетные размеры сзз по фактору вредных выбросов и шуму
- 8.6. Специальная техника для защиты от опасностей
- Источника и приемника с разных сторон от зу
- Источника и приемника с разных сторон от зу
- 8.8. Малоотходные технологии и производства
- Этапы развития стратегий по обращению с отходами
- 8.9, Наилучшие из доступных современных технологий
- 8.10. Комплексная оценка безопасности техногенного объекта ижизненного пространства
- 8.11. Стратегия глобальной безопасности. Устойчивое развитие
- Глава 9
- Глава 10 защита человека от естественных опасностей
- 10.1. Защита от переменных климатических воздействий
- 10.1.1. Защита от воздействия высоких температур
- 10.1.2. Защита от воздействия низких температур
- Средства для восстановления функционального состояния человека после нахождения в холодной воде
- 10.1.3. Вентиляция и кондиционирование
- 10.1.4. Отопление помещений
- 10.2. Освещение
- Нормы освещенности при искусственном освещении по сНиП 23-05-95 (извлечения)
- Нормы освещенности по СанПиН 2.2.1/1278—03 (извлечения — для образовательных учреждений)
- По методу Данилюка
- 10.3. Водоподготовка и водопользование
- 10.4. Требования к пищевым продуктам
- Пдк токсичных металлов в продуктах питания по СанПиН
- Глава 11 защита человека от опасностей технических систем и технологий
- 11.1. Защита от выбросов токсичных веществ в атмосферный воздух помещений
- 11.2. Защита от вибраций
- Гигиенические нормы вибраций по сн 2.2.4/ 2.1.8.566 – 96 (извлечения)
- Виброизоляции
- Виброизоляторы:
- Гасителем колебаний
- На фундамент:
- Элементами:
- 11.3. Защита от акустических воздействий
- Предельно допустимые уровни инфразвука на рабочих местах и на территории жилой застройки
- Допустимые уровни воздействия звукового давления на рабочих местах при воздействии воздушного ультразвука
- Допустимые уровни виброскорости и ее пиковые значения при контактном воздействии ультразвука
- 11.4. Защита от неионизирующих электромагнитных полей и излучений
- Предельно допустимые уровни эми рч, в/м, для населения
- Основные характеристики радиопоглощающих материалов
- 11.5. Защита от электромагнитных полей и излучений оптического диапазона
- 11.5.1. Защита от инфракрасного излучения Нормирование ик-излучения.
- 11.5.2. Защита от лазерного излучения
- 11.6. Защита от ионизирующих излучений
- Мощность эквивалентной дозы, используемая при проектировании защиты от внешнего ионизирующего излучения
- 11.7. Защита пользователей компьютерной техники
- 11.8. Технические способы и средства обеспечения электробезопасности
- 11.9. Защита от механического травмирования
- Смысловые значения и области применения сигнальных цветов и соответствующие им контрастные цвета.
- Глава 12 минимизация антропогенных опасностей
- 12.1. Обучение и инструктаж
- 12.2. Подготовка операторов
- 12.3. Организация безопасного трудового процесса
- 12.4. Особенности безопасной трудовой деятельности женщин и подростков
- Глава 13 защита урбанизированных территорий и природных зон от опасного воздействия техносферы
- 13.1. Защита атмосферного воздуха от выбросов
- 13.2. Защита гидросферы от стоков
- 13.3. Защита земель и почвы от загрязнения
- Дкп для почвы по гн 6229-91
- Удельны затраты различных технеологий обезвреживания тбо, долл/т
- 13.4. Защита от радиоактивных отходов
- 13.4. Защита от радиоактивных отходов
- Глава 14 защита от техногенных чрезвычайных опасностей
- 14.1. Общие меры защиты
- Предельное количество вещества, допустимое для промышленного объекта
- Вид и допустимое количество вещества, находящегося на объекте
- 14.2. Защита от пожаров и взрывов
- Глава 11 239
- Глава 14 392
- Глава 16 481
- Глава 17 484
- Значения критической плотности теплового потока
- 14.2.2. Защита на взрывоопасных объектах
- Основные параметры взрыва аэрозолей
- Степень разрушения коммунально-энергетических и технологических сетей
- Степень разрушения коммунально-энергетических и технологических сетей
- 14.2.3. Методология оценки пожаро-, взрывоопасности помещений и зданий
- Удельная пожарная нагрузка помещений в1—в4
- Степени огнестойкости зданий
- 14.3. Защита на химически опасных объектах
- 14.3. Защита на химически опасных объектах
- 14.3. Защита на химически опасных объектах
- Глава 14. Защита от техногенных чрезвычайных опасностей
- 14.3. Защита на химически опасных объектах
- 14.4. Защита на радиационно опасных объектах
- Классификация радиационных аварий (шкала пче5)
- Фазы радиационной аварии и их характеристика
- Критерии для принятия решений об отселении ограничении потрепления загрязненных пищевых продукто
- Критерии для принятия решений об ограничении потребления загрязненных продуктов в первый год после возникновения аварии
- Радиусы зоны упреждающей эвакуации (зона № 1)
- Меры по защите населения (по фазам аварии)
- Глава 15 Защита от стихийных явлений
- Характеристика землетрясений
- Глава 16 защита от терроризма
- Глава 17 защита от глобальных воздействий
- Ядерные взрывы, произведенные в ссср и сша
- Глава 18 мониторинг и контроль опасностей
- 18.1. Мониторинг окружающей среды.
- 18.2. Мониторинг источника опасностей
- Распределение происшествий, не приведших к авариям или инцидентам, по основным категориям (компания «Халлибуртон», Россия, июнь ― декабрь 2002 г.)
- 18.3. Мониторинг здоровья работающих и населения
- 19 Глава государственное управление
- 19.1. Структура управления
- 19.2. Безопасность труда
- 19.3. Охрана окружающей среды
- 19.4. Защита в чрезвычайных ситуациях
- 19.5. Международное сотрудничество