5.1.9. Электрический ток
Воздействие электрических сетей на человека и окружающую материальную среду многообразно. Значительную
опасность представляют электрические сети для людей, оказавшихся в условиях непосредственного контакта с сетями.
При коротком замыкании в электрических сетях с образованием электрической дуги возможно возникновение возгораний горючих веществ, приводящее к пожарам и взрывам, травмированию обслуживающего персонала и посторонних лиц, оказавшихся в зоне влияния дуги.
Опасность поражения человека электрическим током определяется, прежде всего, величиной тока I , проходящего через тело человека. Его определяют по формуле:
где U — напряжение прикосновения; — сопротивление тела человека.
Прохождение тока может вызывать у человека раздражение и повреждение различных органов. Электрический ток оказывает действие на нервные клетки, кровеносные сосуды и кровь, а также на сердце, головной мозг, органы дыхания и т.д. Наиболее часто в результате поражения током встречаются следующие явления: судороги, фибрилляция сердца, прекращение дыхания, паралич сердца и ожоги.
Минимальная величина тока, при котором возникает судорожное сокращение мышц, называют пороговым неотпускающим током. Его значение для переменного тока частотой 50 Гц лежит в пределах 6—16 мА. Дальнейший рост переменного тока частотой 50 Гц сопровождается его воздействиями на человека, показанными в табл. 5.15.
Таблица 5.15
Влияние силы переменного тока на человека
Сила тока, мА | Воздействие |
20-25 | Паралич рук, дыхание затруднено |
50-80 | Паралич дыхания |
90-100 | Фибрилляция сердца |
≥300 | Паралич сердца |
Важными факторами, влияющими на результат воздействия электрического тока на человека, являются следующие факторы:
род тока и частота;
путь прохождения тока;
температура и влажность воздуха;
состояние кожных покровов человека.
В общем случае показано, что при напряжении до 500 В переменный ток опаснее постоянного, а при напряжении более 500 В опаснее постоянный ток.
Наибольшую опасность представляет ток частотой 50 Гц. Рост и уменьшение частоты снижают опасность его воздействия.
Путь прохождения тока многовариантен. Наиболее опасное воздействие наблюдается в случаях, когда ток проходит через сердце или мозг.
Увеличение времени воздействия тока на человека повышает опасность смертельного поражения. Длительные судороги мышц могут привести к остановке дыхания и сердца.
Сопротивление тела человека во многом зависит от состояния его кожных покровов. Если кожа увлажнена, имеет трещины, то ее сопротивление значительно уменьшается, достигая значений 650—1000 Ом и приближаясь к внутреннему сопротивлению, равному 650—800 Ом.
Опасность поражения человека электрическим током зависит от состояния и вида помещения, где применяются электрические сети и электроустановки. По опасности поражения током различают следующие виды помещений:
помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность;
помещения с повышенной опасностью, характеризующиеся наличием одного из следующих условий:
сырости (относительная влажность длительно превышает 75%) или токопроводящей пыли;
токопроводящих полов (металлические, земляные, железобетонные и т.п.);
высокой температуры, постоянно или периодически (более 1 сут) превышающей +35 ºС;
возможности одновременного прикосновения к металлическим корпусам электрооборудования, с одной стороны, и к металлоконструкциям зданий, имеющим соединение с землей, технологическим аппаратам, механизмам и т.п. — с другой. Сюда можно отнести, например, складские неотапливаемые помещения;
• помещения особо опасные, характеризующиеся одним из следующих признаков:
особой сыростью (влажность близка к 100%);
химически активной или органической средой, разрушающей изоляцию и токоведущие части электрооборудования;
наличием одновременно двух или более условий повышенной опасности. К таким помещениям относится большая часть производственных помещений.
Кроме того, опасными с точки зрения возможности поражения электрическим током могут быть работы, проводимые на территориях размещения наружных электроустановок, которые по опасности поражения током приравниваются к особо опасным помещениям.
Опасность поражения человека электрическим током наступает вследствие:
напряжения шага, которое равно напряжению между точками земли, обусловленному растеканием тока замыкания на землю, при одновременном касании их ногами человека. Численно напряжение шага равно разности потенциалов точек, на которых находятся ноги человека. Поле потенциалов на поверхности земли может возникнуть, например, при замыкании провода на землю в результате его обрыва, при стекании тока с заземлителя и т.п.;
прикосновения к неизолированным токоведущим частям, когда человек одновременно находится в контакте с потенциалом земли или другой токоведущей частью иного потенциала (прямое прикосновение), или прикосновения к части электрического оборудования, которая находится под напряжением, вследствие повреждения изоляции, когда человек находится в контакте с потенциалом земли или другой проводящей частью оборудования иного потенциала (косвенное прикосновение).
Рассмотрим опасность напряжения шага. Для упрощения анализа растекания тока в грунте принимаем, что ток стекает в грунт через одиночный проводник, грунт однородный и изотропный, удельное сопротивление грунта во много раз превышает удельное сопротивление материала заземлителя.
заземлителя.
Напряжение шага. Для анализа рассекания тока в грунте принимаем, что ток стекает в грунт через одиночный заземлитель полусферической формы (рис. 5.22), грунт однородный и изотропный, его удельное сопротивление р во много раз превышает удельное сопротивление материала заземлителя.
Тогда потенциал точки А на расстоянии х выразится зависимостью а потенциал на заземлителе , где I3 — ток, стекающий с заземлителя диаметром 2х в грунт.
Таким образом, потенциал на поверхности грунта изменяется по закону гиперболы (рис. 5.23). Максимальный потенциал будет при х = х3.
Рис 5.23 Напряжение шага
Зону земли, за пределами которой электрический потенциал, обусловленный токами замыкания на землю, может быть условно принят равным нулю, называют зоной растекания тока замыкания на землю. Зона растекания тока простирается, в среднем, на расстояние до 20 м от места замыкания на землю.
При расположении одной ноги человека на расстоянии х от упавшего провода заземлителя и ширине шага а (обычно принимается, а = 1 м) получаем напряжение шага
где - напряжение шага, которое зависит от расстояния
до заземлителя и ширины шага (чем ближе к заземлителю и чем шире шаг, тем коэффициент β больше). Электрический ток через тело человека, обусловленный напряжением шага, равен
где Rч — сопротивление в цепи протекания тока через человека, состоящее из сопротивлений тела человека, обуви и опорной поверхности, на которой он находится.
Опасность поражения током в электрических сетях. Случаи поражения человека током возможны лишь при замыкании электрической цепи через тело человека, т.е. при прикосновении человека не менее чем к двум точкам цепи, между которыми существует напряжение (разность потенциалов). Опасность такого прикосновения зависит от ряда факторов: схемы включения человека в цепь, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей относительно земли.
Схемы включения человека в электрическую цепь могут быть различными (рис. 5.24). Наиболее характерными являются две схемы включения: между двумя проводами (двухфазное включение) и между одним проводом и землей (однофазное включение). Во втором случае предполагается наличие электрической связи между сетью и землей.
Двухфазное включение — прикосновение человека о, временно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной напряжение — линейное, и поэтому через тело человека пройдет ток
где Uл — линейное напряжение, т.е. напряжение между фазными проводами сети; Uф — фазное напряжение; UЛ = 1,73 U
Рис. 5.24. Случаи включения человека в электрическую цепь:
а — двухфазное; бив— однофазное (соответственно прямое и косвенное); Z — полное сопротивление фазы относительно земли
Двухфазное включение является одинаково опасным в сети как с изолированной, так и с заземленной нейтралью. При этом изоляция человека от земли, например с помощью диэлектрического коврика, не уменьшит опасность поражения.
Однофазное включение происходит значительно чаще, но является менее опасным, чем двухфазное, поскольку напряжение, под которым оказывается человек, не превышает фазового. Соответственно меньшим будет и ток, проходящий через тело человека. Кроме того, на значение этого тока влияют режим нейтрали источника тока, сопротивление изоляции и емкость проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви тугие факторы. Рассмотрим подробнее получившие широкое распространение трехфазные сети напряжением до 1 кВ при нормальном и аварийном режимах работы. Это сети трехпроводные с изолированной нейтралью и сети с глухозаземленной нейтралью.
В трехфазной трехпроводной сети с изолированной нейтралью ток, проходящий через тело человека, при прикосновении к одной из фаз сети в период ее нормальной работы определяют следующим выражением:
где r- сопротивление изоляции провода
Из этого выражения следует, что с увеличением сопротивления изоляции опасность поражения током уменьшается. Поэтому очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние для своевременного выявления и устранения возникших неисправностей.
При аварийном режиме работы сети (рис.5.25), когда возникло замыкание одной из фаз на землю через малое сопротивление rзм, ее напряжение относительно земли снижается, поскольку rзм<< r.
Рис 5.25 Прикосновение человека к проводу трехфазной трехпроводной сети с изолированной нейтралью при аварийном режиме
При этом напряжение, под которым окажется человек, прикоснувшийся к исправной фазе трехфазной сети с изолированной нейтралью, будет значительно больше фазного и несколько меньше линейного напряжения. Таким образом, этот случай прикосновения опаснее прикосновения к той же фазе сети при нормальном режиме работы.
В трехфазной четырехпроводной сети с заземленной нейтралью при нормальном режиме работы сети (рис. 5.26, а) ток, проходящий через тело человека, равен
Iч = Uф/ (Rч + r0)
где r0 — сопротивление заземления нейтрали.
Как правило, r0 < 8 Ом и r0<< Rч, следовательно, без большой ошибки в формуле можно пренебречь значением r0 и считать, что человек оказывается практически под фазным напряжением Uф, а ток IЧ ≈ Uф/Rч. Ограничить прохождение тока через человека можно, увеличив сопротивление Rч , например, используя диэлектрическую обувь, диэлектрические коврики, изолирующие подставки.
Отсюда следует, что прикосновение к фазе трехфазной сети с заземленной нейтралью в период нормальной ее работы более опасно, чем прикосновение к фазе нормально работающей сети с изолированной нейтралью.
При аварийном режиме, когда одна из фаз сети замкнута на землю через относительно малое сопротивление rзм (рис. 5.26, б), напряжение, под которым оказывается человек, прикоснувшийся в аварийный период к исправному фазному проводу трехфазной сети с заземленной нейтралью, всегда меньше линейного, но больше фазного. Таким образом, прикосновение к исправной фазе сети с заземленной нейтралью в аварийный период более опасно, чем при нормальном режиме.
При выборе схемы сети, а, следовательно, и режима нейтрали источника тока, исходя из технологических требований, часто отдается предпочтение четырехпроводной сети с глухо-заземленной нейтралью, поскольку она позволяет использовать два рабочих напряжения — линейное и фазное.
Проведенный выше анализ сетей напряжением до 1 кВ показал, что по условиям безопасности (в случае прикосновения к фазному проводу в период нормального режима работы сети) более безопасной является, как правило, сеть с изолированной нейтралью, а в аварийный период — сеть с заземленной нейтралью. Следовательно, сети с изолированной нейтралью целесообразно применять в тех случаях, когда имеется возможность поддерживать высокий уровень изоляции проводов. Такими являются мало разветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала. Примером могут служить сети электротехнических лабораторий.
Сеть с заземленной нейтралью из условий безопасности следует применять там, где невозможно обеспечить хорошую изоляцию проводов (из-за высокой влажности, агрессивной среды и пр.), когда нельзя быстро отыскать или устранить повреждение изоляции. Это, как правило, сети жилых, общественных и промышленных зданий и наружных установок.
Электрическая дуга. Она возникает при коротком замыкании, электрическом пробое воздушных зазоров и т.п. Температура дуги может достигать 7000 °С, вызывая тяжелые ожоги и травмы. При контакте кожи человека с металлическими токоведущими частями оборудования, оказавшимися под высоким напряжением (1000 В и более), возникают «электрические знаки».
- Глава 1 принципы и понятия ноксологии
- Глава 2 опасности и их показатели
- 2.1. Возникновение и основы реализации опасностей
- 2.2. Закон толерантности, опасные и чрезвычайно опасные воздействия.
- 2.3. Поле опасностей
- 2.4. Качественная классификация (таксономия) опасностей.
- Паспорт опасности сброса жидких отходов гальванического цеха (участка)
- Паспорт опасности лэп
- 2.5. Количественная оценка опасностей
- Нормы освещенности по СанПиН 2.2.1/1278—03 (извлечения — для жилых помещений)
- Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны (пдКрз) по гост 12.1.005-88 (извлечения)
- Предельно допустимые концентрации некоторых вредных веществ, мг/м3, в атмосферном воздухе населенных мест по гост 12.1.005—88 (извлечения)
- Характерные значения индивидуального риска гибели людей от естественных и техногенных факторов
- 2.6. Показатели негативного влияния реализованных опасностей
- Зависимость спж от ввп
- Глава 3 Естественные и естественно-техногенные опасности
- 3.1. Повседневные абиотические факторы
- 3.2. Стихийные явления
- Глава 4 антропогенные опасности
- 4.1. Виды взаимосвязей человека-оператора с технической системой
- 4.2. Восприятие внешних воздействий и ошибочные реакции человека
- Глава 5 техногенные опасности
- 5.1.1. Вредные вещества
- Токсикологическая классификация вредных веществ
- Отравления протекают в острой, подострой и хронической формах.
- Ниже приведена классификация производственных вредных веществ по степени опасности (табл. 5.2).
- Различают несколько типов комбинированного действия ядов: аддитивного, потенцированного, антагонистического, независимого действия.
- Примером аддитивности является наркотическое действие смеси углеводородов (бензола и изопропилбензола).
- 5.1.2. Вибрация
- Характеристики направленности излучения шума машиной.
- 5.1.4. Инфразвук
- 5.1.5. Ультразвук
- 5.1.6. Электромагнитные поля и излучения
- Применение электромагнитных полей и излучений
- 5.1.7. Лазерное излучение
- При диффузном отражении энергетическая яркость источника связана с энергетическим потоком лазерного излучения соотношением:
- Зоны опасного влияния современных лазерных установок обычно ограничены размерами производственного помещения.
- По определению:
- Медицинское облучение 51,5
- Природный радиационный фон 43,4
- Ядерные испытания 2,5
- Стройматериалы 2,0
- Полеты в авиалайнерах 0,3
- Телевизоры 0,28
- Атомная энергетика 0,08
- 5.1.9. Электрический ток
- 5.1.10. Механическое травмирование
- 5.2 Региональные и глобальные воздействия
- 5.2.1. Воздействие на атмосферу
- Приоритетный список городов с наибольшим уровнем загрязнения воздуха в 2004 г.
- Выпадение тяжелых металлов на етр в начале XXI в.
- Вклад парниковых газов
- 5.2.2. Воздействие на гидросферу
- Состав гидросфера
- Сброс загрязняющих веществ со сточными водами
- Воздействие на литосферу
- Города России с разной категорией опасности загрязнения почв металлами
- Источники и вещества, загрязняющие почву
- 5.3. Чрезвычайные опасности
- Основные параметры отечественных ядерных реакторов
- Основные причины аварий на аэс
- Основные характеристики ахов
- Масштабы гибели пассажиров на транспорте
- Чрезвычайные ситуации, происшедшие на территории рф
- Глава 6 масштабы негативного влияния опасностей на человека и природу
- 6.1. Опасности производственной и бытовой среды
- Зависимость состояния человека от изменения параметров микроклимата
- 6.2. Региональные и глобальные опасности
- Отдельные случаи чрезмерно высоких загрязнений компонент биосферы и их последствия
- Влияние состава атмосферного воздуха на здоровье людей
- 6.3. Чрезвычайные опасности
- Структура негативного влияния природных и техногенных чс
- 6.4. Смертность населения от внешних причин
- Глава 7 анализ и прогнозирование влияния техносферных опасностей на человека
- Классы условий труда в зависимости от содержания в воздухе рабочей зоны вредных веществ
- Классы условий труда в зависимости от уровней шума, локальной и общей вибрации, инфра- и ультразвука на рабочем месте
- Шкала оценки ущерба здоровью в зависимости от класса вредности
- Определение ущерба здоровью на основании общей оценки условий труда
- Определение ущерба здоровью по показателю тяжести трудового процесса
- Глава 8 безопасность человека, селитебных зон и природы
- 8.1. Понятие безопасности объекта защиты
- 8.2.Взаимодействие источников опасностей, опасных зон и объектов защиты
- В техносфере.
- 8.3. Общие тенденции достижения бжд и зос
- 8.4. Идентификация опасностей техногенных источников
- 8.4.1. Идентификация вредных воздействий
- 8.4.2. Идентификация травмоопасных воздействий
- Расчетные расстояния, на которых возможно нанесение ущерба здоровью населения при хранении веществ на опо
- Удаленность опо от населенных пунктов
- Радиусы зон поражения при авариях
- 8.4 Плотность населения в различных зонах
- 8.5 Значения величины техногенного риска
- 8.5. Защитное зонирование
- Нормативные и расчетные размеры сзз по фактору вредных выбросов и шуму
- 8.6. Специальная техника для защиты от опасностей
- Источника и приемника с разных сторон от зу
- Источника и приемника с разных сторон от зу
- 8.8. Малоотходные технологии и производства
- Этапы развития стратегий по обращению с отходами
- 8.9, Наилучшие из доступных современных технологий
- 8.10. Комплексная оценка безопасности техногенного объекта ижизненного пространства
- 8.11. Стратегия глобальной безопасности. Устойчивое развитие
- Глава 9
- Глава 10 защита человека от естественных опасностей
- 10.1. Защита от переменных климатических воздействий
- 10.1.1. Защита от воздействия высоких температур
- 10.1.2. Защита от воздействия низких температур
- Средства для восстановления функционального состояния человека после нахождения в холодной воде
- 10.1.3. Вентиляция и кондиционирование
- 10.1.4. Отопление помещений
- 10.2. Освещение
- Нормы освещенности при искусственном освещении по сНиП 23-05-95 (извлечения)
- Нормы освещенности по СанПиН 2.2.1/1278—03 (извлечения — для образовательных учреждений)
- По методу Данилюка
- 10.3. Водоподготовка и водопользование
- 10.4. Требования к пищевым продуктам
- Пдк токсичных металлов в продуктах питания по СанПиН
- Глава 11 защита человека от опасностей технических систем и технологий
- 11.1. Защита от выбросов токсичных веществ в атмосферный воздух помещений
- 11.2. Защита от вибраций
- Гигиенические нормы вибраций по сн 2.2.4/ 2.1.8.566 – 96 (извлечения)
- Виброизоляции
- Виброизоляторы:
- Гасителем колебаний
- На фундамент:
- Элементами:
- 11.3. Защита от акустических воздействий
- Предельно допустимые уровни инфразвука на рабочих местах и на территории жилой застройки
- Допустимые уровни воздействия звукового давления на рабочих местах при воздействии воздушного ультразвука
- Допустимые уровни виброскорости и ее пиковые значения при контактном воздействии ультразвука
- 11.4. Защита от неионизирующих электромагнитных полей и излучений
- Предельно допустимые уровни эми рч, в/м, для населения
- Основные характеристики радиопоглощающих материалов
- 11.5. Защита от электромагнитных полей и излучений оптического диапазона
- 11.5.1. Защита от инфракрасного излучения Нормирование ик-излучения.
- 11.5.2. Защита от лазерного излучения
- 11.6. Защита от ионизирующих излучений
- Мощность эквивалентной дозы, используемая при проектировании защиты от внешнего ионизирующего излучения
- 11.7. Защита пользователей компьютерной техники
- 11.8. Технические способы и средства обеспечения электробезопасности
- 11.9. Защита от механического травмирования
- Смысловые значения и области применения сигнальных цветов и соответствующие им контрастные цвета.
- Глава 12 минимизация антропогенных опасностей
- 12.1. Обучение и инструктаж
- 12.2. Подготовка операторов
- 12.3. Организация безопасного трудового процесса
- 12.4. Особенности безопасной трудовой деятельности женщин и подростков
- Глава 13 защита урбанизированных территорий и природных зон от опасного воздействия техносферы
- 13.1. Защита атмосферного воздуха от выбросов
- 13.2. Защита гидросферы от стоков
- 13.3. Защита земель и почвы от загрязнения
- Дкп для почвы по гн 6229-91
- Удельны затраты различных технеологий обезвреживания тбо, долл/т
- 13.4. Защита от радиоактивных отходов
- 13.4. Защита от радиоактивных отходов
- Глава 14 защита от техногенных чрезвычайных опасностей
- 14.1. Общие меры защиты
- Предельное количество вещества, допустимое для промышленного объекта
- Вид и допустимое количество вещества, находящегося на объекте
- 14.2. Защита от пожаров и взрывов
- Глава 11 239
- Глава 14 392
- Глава 16 481
- Глава 17 484
- Значения критической плотности теплового потока
- 14.2.2. Защита на взрывоопасных объектах
- Основные параметры взрыва аэрозолей
- Степень разрушения коммунально-энергетических и технологических сетей
- Степень разрушения коммунально-энергетических и технологических сетей
- 14.2.3. Методология оценки пожаро-, взрывоопасности помещений и зданий
- Удельная пожарная нагрузка помещений в1—в4
- Степени огнестойкости зданий
- 14.3. Защита на химически опасных объектах
- 14.3. Защита на химически опасных объектах
- 14.3. Защита на химически опасных объектах
- Глава 14. Защита от техногенных чрезвычайных опасностей
- 14.3. Защита на химически опасных объектах
- 14.4. Защита на радиационно опасных объектах
- Классификация радиационных аварий (шкала пче5)
- Фазы радиационной аварии и их характеристика
- Критерии для принятия решений об отселении ограничении потрепления загрязненных пищевых продукто
- Критерии для принятия решений об ограничении потребления загрязненных продуктов в первый год после возникновения аварии
- Радиусы зоны упреждающей эвакуации (зона № 1)
- Меры по защите населения (по фазам аварии)
- Глава 15 Защита от стихийных явлений
- Характеристика землетрясений
- Глава 16 защита от терроризма
- Глава 17 защита от глобальных воздействий
- Ядерные взрывы, произведенные в ссср и сша
- Глава 18 мониторинг и контроль опасностей
- 18.1. Мониторинг окружающей среды.
- 18.2. Мониторинг источника опасностей
- Распределение происшествий, не приведших к авариям или инцидентам, по основным категориям (компания «Халлибуртон», Россия, июнь ― декабрь 2002 г.)
- 18.3. Мониторинг здоровья работающих и населения
- 19 Глава государственное управление
- 19.1. Структура управления
- 19.2. Безопасность труда
- 19.3. Охрана окружающей среды
- 19.4. Защита в чрезвычайных ситуациях
- 19.5. Международное сотрудничество