logo
Лекции / лекции

Тема2.1опасности технических систем

План:

1. Предмет анализа опасностей.

2. Качественный анализ опасностей.

3. Количественный анализ опасностей.

4. Численный анализ риска.

5. Стандартные показатели несчастных случаев.

6. Анализ последствий ЧС.

Предмет анализа опасностей.Объектом анализа опасностей является система «человек–машина–окружающая среда (ЧМС)», в которой в единый комплекс, предназначенный для выполнения определенных функций, объединены технические объекты, люди и окружающая среда, взаимодействующие друг с другом. Самым простым является локальное взаимодействие, которое осуществляется при контакте человека с техникой в домашних условиях, на работе и во время движения, а также взаимодействие между отдельными промышленными предприятиями. Далее можно выделить межрегиональное и глобальное взаимодействие. Взаимодействие может быть штатным и нештатным.

Нештатное взаимодействие объектов, входящих в систему ЧМС, может выражаться в виде чепе. Излагаемый ниже аппарат анализа опасностей построен на следующих определениях

Чепе –нежелательное, незапланированное, непреднамеренное событие в системе ЧМС, нарушающее обычный ход вещей и происходящее в относительно короткий отрезок времени.

Несчастный случай – чепе, заключающееся в повреждении организма человека.

Отказ – чепе, заключающееся в нарушении работоспособности компонента системы.

Инцидент– вид отказа, связанный с неправильными действиями или поведением человека.

Анализ опасностей делает предсказуемыми перечисленные выше чепе и, следовательно, их можно предотвратить соответствующими мерами. К главным моментам анализа опасностей относится поиск ответов на следующие вопросы. Какие объекты являются опасными? Какие чепе можно предотвратить? Какие чепе нельзя устранить полностью и как часто они будут иметь место? Какие повреждения неустранимые чепе могут нанести людям, материальным объектам, окружающей среде?

Анализ опасностей описывает опасности качественно и количественно и заканчивается планированием предупредительных мероприятий. Он базируется на знании алгебры логики и событий, теории вероятностей, статистическом анализе, требует инженерных знаний и системного подхода.

Основные понятия. Чепе и высказывания обычно обозначают прописными буквами А, В, С, Dи т. д., полагая, например,А=1, если чепеАпроизошло или высказываниеАистинно, иА== 0, если чепе не произошло или высказанное ложно. Тождественно истинное высказывание и чепе, которое происходит всегда (достоверное событие), обозначают через I, а тождественно ложное высказывание и невозможное чепе –через Ø. Для этих элементов всегда имеем: 1=1, Ø= 0. В табл. 4.1 представлены основные операции, которые могут быть применены к элементамА, В –чепе или высказываниям. С помощью этих операций строят логические функции, которые в анализе опасностей преобразуют определенным образом.

Таблица 4.1. Двухместные операции над высказываниями и чепе

Операция

Обозначение

Формула

НЕ (логическое отрицание, инверсия)

Ā =1-А

ИЛИ (логическая сумма, дизъюнкция)

+

А + В = max(А, В) (4.1)

И (логическое произведение, конъюнкция)

*

А*В = min (А, В)(4.1, а)

Импликация

АВ = Ā + В(4.2)

Эквивалентность



АВ =В)*(В А) =А * В+ Ā*B(4.2, а)

Примечание. Для упрощения записи знак • часто опускают, например, вместо А* В* С пишут АВС

Таблица 4.2. Группы чепе-несчастий

Обозначения

N–несчастный случай

N– нет несчастного случая

А– авария

Ā – нет аварии

N

Несчастный случай и авария

N

Несчастный случай и нет аварии

A*N

Авария и нет несчастного случая

Ā*N

Нет аварии

и нет несчастного случая

В качестве примера на рис. 4.2 показаны этапы построения (I–V) карты Карно для функций

F(A,B,C,D) = A*C*D+A*B*C+A*B*D+C*D

В дальнейшем будут рассматриваться только те события, которые относятся к разряду случайных.

Катастрофы, аварии, несчастные случаи образуют группу чепе, которую будем называть чепе-несчастьями или сокращенно–н-чепе. Отказы и инциденты обычно предшествуют н-чепе, но могут иметь и самостоятельное значение.

Группы н-чепе даны в табл. 4.2. Согласно принятой терминологии произведение N*A=K,гдеКобозначает катастрофу.

Все н-чепе определяются как повреждения. Вопрос состоит в том, что считать повреждением. Например, повреждение организма может привести к летальному исходу. Однако в других случаях повреждение может быть таким, что его трудно или невозможно будет диагностировать (например, при взрыве установки в рабочего попало мягкое резиновое уплотнение). В настоящее время отсутствует единица «количества повреждения», так как вред и степень повреждения часто нельзя или трудно измерить (см. ниже). С точки зрения анализа опасностей существенным является то, что любое «нулевое повреждение» принимается во внимание и исследуется Рассмотрим такие понятия, как опасность, повреждающий фактор и ущерб.

Слово опасность имеет несколько оттенков. В конструкциях: «существует опасность взрыва, ожога и т д.» речь прежде всего идет о возможности наступления соответствующего чепе. Здесь опасность и возможность как бы синонимы. В конструкциях типа: «опасность представляет сосуд под давлением», «опасность представляет короткое замыкание в электрической цепи» на первый план выводится отрицательная эмоция – страх. Здесь слова «опасность представляет» созвучны со словами «страх (угрозу) вызывает». Наконец, в предложениях: «основные опасности: движущиеся части (машины и оборудование), влажность, радиация...» под опасностью понимают что-то вполне материальное. Поэтому имеет смысл понятие «опасность» рассматривать как возможность чепе-несчастья и тех чепе, которые к нему ведут.

Таблица 4.3. Вариант классификации несчастных случаев N= (T+ Z+ D)

Группа Г (повреждение тканей)

Группа Z(острые заболевания)

Группа D(повреждения при обстоятельствах)

Травма Т1

Ожог Т2

Обморожение Т3

Летальный исход L

Острое профзаболевание Z1

Отравление Z2

Тепловой удар Z3

Летальный исход L

При стихийных бедствиях D1

При контактах с животными и насекомыми D2

При повреждении молнией D3

Летальный исход, включая утопление L

Источник опасности –явление, откуда может проистекать опасность. Явление включает все, что может предстать перед нашим взором или в мыслях.

Таким образом, понятие «опасность» включает степень незащищенности при наличии источника опасности. Соответствующими предупредительными мерами опасность или степень незащищенности можно уменьшить. Например, изоляция электрического провода или установка кожуха на движущиеся части машины уменьшает степень незащищенности несмотря на наличие источника опасности. Полное отсутствие опасности – это такое идеальное состояние, которое крайне редко может быть реализовано. Поэтому безопасность как противоположность опасности – это скорее всего вопрос и содержание защиты от опасности. В этой связи источник опасности условно считают неопасным, если известен риск (см. ниже), и этот риск считается приемлемым. Пространство, где риск не приемлем, и где существует возможность наступления н-чепе,– называют опасной зоной.

Наконец, мы говорим об опасности до ее перехода в действительность. После реализации чепе разговор об этой опасности есть абсурд: речь может идти о реальных причинах чепе, нанесенном ущербе и новом источнике опасности. Следовательно, анализ опасностей в первую очередь имеет дело с потенциальными повреждающими факторами и потенциальными чепе. Потенциальный повреждающий фактор до некоторой поры может быть скрытым, неявным. Его нелегко распознать, выявить. Однако, анализируя цепь потенциальных событий, можно выделить такое событие, которое позволяет его более четко разглядеть, зафиксировать, назвать или сблизить с повреждаемым объектом. Можно считать, что это событие – чепе представляет корень опасности. Примеры даны в табл. 4.4.

Таблица 4.4. Источники опасности и повреждающие факторы

Источник опасности

Опасность (потенциальное чепе)

Повреждающий фактор

Сосуд с газом под давлением

Механический взрыв

Летящие осколки

Утечка из сосуда

Токсичный газ

Электрическая установка

Замыкание на корпус

Электрический ток

Подъемный кран

Обрыв троса

Движущийся груз

Нагретый коллектор

Повреждение изоляции

Теплота

Ядерная установка

Вход в зону

Радиация

Взрывоопасная смесь

Химический взрыв

Ударная волна

Следует отметить, что деление на источник, потенциальное чепе и повреждающий фактор производится в зависимости от тех задач, которые ставятся. Например, летящие осколки (см. табл. 4.4) можно при необходимости отнести к понятию источник опасности. Тогда потенциальным чепе может стать попадание осколков в человека, а повреждающим фактором – кинетическая энергия.

Чепе-несчастья создают повреждения, которые могут поддаваться или не поддаваться количественной оценке, например, смертельные случаи, уменьшение продолжительности жизни, вред здоровью, материальный ущерб, ущерб окружающей среде, неспокойное воздействие на общество, дезорганизация работы. Последствия или «количество нанесенного вреда» зависит от многих факторов, например, от числа людей, находившихся в опасной зоне, или количества и качества находившихся там материальных ценностей. С целью унификации различные последствия и вред обозначают термином ущерб.Ущерб измеряют денежным эквивалентом или числом летальных исходов, или количеством травмированных людей и т. п. Как это ни кощунственно, но между этими единицами измерения желательно найти эквивалент, чтобы ущерб можно было измерять в стоимостном выражении.

Качественный анализ опасностей.

Анализ опасностей позволяет определить источники опасностей, потенциальные н-чепе, чепе-инициаторы, последовательности развития событий, вероятности чепе, величину риска, величину последствий, пути предотвращения чепе и смягчения последствий.

На практике анализ опасностей начинают с грубого исследования, позволяющего идентифицировать в основном источники опасностей. Затем при необходимости исследования могут быть углублены и может быть проведен детальный качественный анализ. Выбор того или иного качественного метода анализа зависит от преследуемой цели, предназначения объекта и его сложности. Установление логических связей необходимо для расчета вероятностей чепе. Методы расчета вероятностей и статистический анализ являются составными частями количественного анализа опасностей. Когда удается оценить ущерб, то можно провести численный анализ риска. При анализе опасностей всегда принимают во внимание используемые материалы, рабочие параметры системы, наличие и состояние контрольно-измерительных средств. Исследование заканчивают предложениями по минимизации или предотвращению опасностей..

Качественные методы анализа опасностей включают: предварительный анализ опасностей, анализ последствий отказов, анализ опасностей с помощью дерева причин, анализ опасностей с помощью дерева последствий, анализ опасностей методом потенциальных отклонений, анализ ошибок персонала, причинно-следственный анализ.

Предварительный анализ опасностей(ПАО) обычно осуществляют в следующем порядке:

– изучают технические характеристики объекта, системы, процесса, а также используемые энергетические источники, рабочие среды, материалы; устанавливают их повреждающие свойства;

– устанавливают законы, стандарты, правила, действия которых распространяются на данный технический объект, систему, процесс;

– проверяют техническую документацию на ее соответствие законам, правилам, принципам и нормам стандартов безопасности;

– составляют перечень опасностей, в котором указывают идентифицированные источники опасностей (системы, подсистемы, компоненты), повреждающие факторы, потенциальные чепе, выявленные недостатки.

При проведении ПАО особое внимание уделяют наличию взрыво-пожароопасных и токсичных веществ, выявлению компонентов объекта, в которых возможно их присутствие, потенциальным чепе от неконтролируемых реакций и при превышении давления. После того как выявлены крупные системы технического объекта, которые являются источниками опасности, их можно рассмотреть отдельно и более детально исследовать с помощью других методов анализа, описанных ниже.

Анализ последствий отказов(АЛО) – преимущественно качественный метод идентификации опасностей, основанный на системном подходе и имеющий характер прогноза. Этим методом можно оценить опасный потенциал любого технического объекта. АЛО обычно осуществляют в следующем порядке:

– техническую систему (объект) подразделяют на компоненты;

– для каждого компонента выявляют возможные отказы;

– изучают потенциальные чепе, которые может вызвать тот или иной отказ на исследуемом техническом объекте;

– результаты записывают в виде таблицы;

– отказы ранжируют по опасностям и разрабатывают предупредительные меры, включая конструкционные изменения.

Анализ последствий отказов может выявить необходимость применения других, более емких методов идентификации опасностей. Кроме того, в результате анализа отказов могут быть собраны и документально оформлены данные о частоте отказов, необходимые для количественной оценки уровня опасностей рассматриваемого технического объекта.

Анализ опасностей с помощью дерева причин потенциального чепе (АОДП) обычно выполняют в следующем порядке. Сначала выбирают потенциальное чепе (например, н-чепе или какой-либо отказ, который может привести к н-чепе). Затем выявляют все факторы, которые могут привести к заданному чепе (системы, подсистемы, события, связи и т. д.). По результатам этого анализа строят ориентированный граф. Вершина (корень) этого графа занумерована потенциальным чепе. Поэтому граф является деревом. В нашем случае дерево состоит из всех тех причин-событий, которые делают возможным заданное чепе.

Анализ опасностей методом потенциальных отклонений(АОМПО):отклонение –режим функционирования какого-либо объекта, системы, процесса или какой-либо их части (компонента), отличающийся в той или иной мере от конструкторского предназначения (замысла).

Метод потенциальных отклонений (МПО) – процедура искусственного создания отклонений с помощью ключевых слов. Этим методом анализируют опасности герметичных процессов и систем. Наибольшее распространение он получил в химической промышленности. АОМПО обычно предшествует ПАО.

В табл. 4.10 приведены возможные виды потенциальных ошибок, совершаемых операторами. Каждому виду ошибки присвоен гипотетаческий номер по классификатору. В результате ошибок персонала возможны аварии (пожары, взрывы, механические повреждения, выбросы токсичных химических веществ, проливы и т. д.), несчастные случаи (летальные исходы, травмы и т. д.), катастрофы (разные степейи повреждения организма и собственности), которые также могут быть классифицированы. Причины ошибок, вероятности ошибок, возможности исправления ошибок с гипотетической их классификацией даны в табл. 4.11–4.13. Следует иметь в виду, что в основу классификации причин ошибок положены внешние и внутренние факторы, так как факторы стресса могут носить и тот и другой характер. Вероятность ошибки оператора зависит от стажа работы и наличия стрессовых условий на рабочем месте. Опыт показывает, что оператор со стажем может совершать ошибки (рис. 4.15, а)и что вероятность ошибки оператора в зависимости от величины стресса также имеет оптимум (рис. 4.15,б).

Таблица 4.10. Виды потенциальных ошибок и гипотетические номера по классификатору

Вид потенциальной ошибки

Номер по классификатеру

Пропуск действия

Д1

Неправильное действие

Д2

Действие в неправильном направлении

ДЗ

Много действий

Д4

Мало действий

Д5

Неправильные действия на правильную цель

Д6

Правильные действия на неправильную цель

Д7

Преждевременное действие

Д8

Запоздалое действие

Д9

Слишком длительное действие

Д10

Слишком короткое действие

Д11

Неправильный порядок действий

Д12

Вредное дополнительное действие

Д13

Таблица 4.11. Гипотетическая классификация причин ошибок

Действующие факторы

Причины ошибок

Номер по классификатору

Внешние факторы

Инструкции

П1

Информация

П2

Организация

ПЗ

Эргономика

П4

Условия работы

П5

Постановка цели

П6

Внутренние факторы

Опыт

П7

Умение

П8

Знания

П9

Мотивация

П10

Факторы стресса

Психологическое напряжение

П11

Физиологическое напряжение

П12

Выбрав величину U,измеряющую последствия ошибки (например, число летальных исходов, денежный эквивалент и т. д.), и установив подходящую шкалу для измерений (например, (/= 1...10; 1....100 и т. д.), можно для сравнительной оценки рассчитать значения рисков

R=Poп(1-Pис)U,

где Ропи Рис– вероятность ошибки оператора и вероятность ее исправления.

Таблица 4.12. Гипотетический классификатор ориентировочных значений вероятности ошибки оператора

Номер по классификатору

Рутинная работа

Наличие инструкций

Наличие стресса

Новая ситуация

Ориентировочное значение вероятности ошибки оператора Роп

В1

Да

Да

Нет

Нет

0,0001… 0,001

В2

Да

В неполном объеме

Небольшой

Нет

0,001...0,005

ВЗ

Да

В неполном объеме

Некоторый

Нет

0,005...0,01

В4

Нет

Нет

Некоторый

Нет

0,01...0,05

В5

Нет

Нет

Да

Нет

0,05… 0,5

В6

Нет

Нет

Да

Да

0,5…1,0

Таблица 4.13. Гипотетический классификатор ориентировочных значений вероятности исправления ошибки оператора

Исправление ошибки (характеристика)

Ориентировочное значение вероятности исправления ошибки Pис

Номер по классификатору

Весьма вероятное

0,5

И1

Вероятное

0,2

И2

Возможное

0,1

ИЗ

Невероятное

0,01

И4

Весьма невероятное

0,001

И5

Невозможное

0

И6

С помощью системы защиты

0,95...1,0

И7

Невозможное из-за отсутствия времени

0

И8

На рис. 4.16 и в табл. 4.14 даны возможные варианты представления результатов выполнения анализа ошибок персонала.

Таблица 4.14. Вариант представления результатов анализа ошибок персонала

Форма анализа

Пример1

Пример 2

Пример 3

Система и вид работы

Цель работы

Вид потенциальной ошибки

Потенциальные последствия

Исправление ошибки

Причины ошибки

Метод предотвращения ошибки

Вероятность ошибки

Вероятность исправления ошибки

Шкала последствий

Величина последствий U

Расчет риска:

R=Pоп(1-Pис)U

Метод снижения риска

Другие данные

Объект X1

Процесс Y1

Вид работы Z1

Задача по Z1

D12

А

И2

П3

П38 (пересмотр правил)

0,02 (В4)

0,2

1…100

40

0,64

Управление

Нет

Объект X2

Процесс Y2

Вид работы Z2

Задача по Z2

D2

N

И7

П5

П54(снижение шума)

0,3(В5)

0,99

1…10

4

0,012

Обучение персонала

Нет

Объект X3

Процесс Y3

Вид работы Z3

Задача по Z3

D3

K

И4

П6

П61(изменение объекта)

0,1(В5)

0,01

1…10

8

0,792

Технические меры, обучение персонала

Нет

Причинно-следственный анализ(ПСА) выявляет причины происшедшего чепе. Тем не менее ПСА является составной частью общего анализа опасностей. Он завершается прогнозом новых чепе и составлением плана мероприятий по их предупреждению.

Анализ начинают со сбора информации, которая призвана описать чепе точно и объективно. Составляют перечень событий, предшествовавших чепе, при этом обращают внимание на то, что регистрируемые реальные события и факты бывают двух видов: носящие случайный характер и носящие постоянный характер. Последние участвуют в возникновении чепе опосредованно и в сочетании со случайными событиями. Например, плохая конструкция ограждений на машине (факт, носящий постоянный характер) способствовала проникновению руки оператора в опасную зону (случайное событие). Перечень может содержать достаточно большое число событии, предшествовавших чепе, и по нему трудно дать необходимые заключения. В этом случае целесообразно построить ориентированный граф –дерево причин. Построение начинают с последней стадии развития событий, а именно, с чепе-несчастья. По каждому предшествующему событию последовательно ставят следующие вопросы. Каким предшествующим событием Х было непосредственно вызвано событие Y? Достаточно ли было одного событияX,чтобы вызватьY? Если нет, то какие другие предшествующие событияХ1, X2,...,Хпеще необходимы, чтобы непосредственно вызвать событиеY?

Логическая структура дерева причин такова, что при отсутствии хотя бы одного из предшествующих событий н-чепе произойти не может. Это является хорошей основой для того, чтобы сформулировать предупредительные меры с целью: а) исключить повторение н-чепе данного типа; б) избежать более или менее аналогичных н-чепе (чепе, которые имеют с данным чепе общие признаки).

Анализируя дерево причин, можно также заметить, что не все предшествующие события имеют одинаковое значение для предотвращения н-чепе. Поэтому имеет смысл составить еще один (сокращенный) перечень событий, по которому и принимать предупредительные меры.

Рассмотрим пример. Во дворе предприятия водитель тягача приступил к сцепке тягача с прицепом. Операция осложнилась из-за различной высоты тягача и прицепа, и водитель спустился вниз, чтобы выяснить причину затруднения, забыв поставить тягач на тормоз. Кроме того, это был не тот тягач, который обычно эксплуатировался с этим прицепом. Когда водитель находился между прицепом и тягачом, тягач с работающим двигателем скатился назад по небольшому уклону и придавил водителя к раме прицепа.

Дерево причин дано на рис. 4.17. Результаты анализа (возможный вариант) представлены в табл. 4.16 в виде причин происшедшего чепе, предупредительных мероприятий и источников опасности, которые спрогнозированы на базе фактов, занесенных в графу причин. Прогнозирование осуществляют в двух дополняющих друг друга направлениях а) ведут поиск источников опасности на данном месте; б) ведут поиск рабочих мест, где данный источник опасности может быть идентифицирован. Таким образом, причинно-следственный анализ происшедшего н-чепе не только позволяет исключить выявленные причины, но и спрогнозировать опасности. Наконец, за исполнением предупредительных мероприятий необходимо проследить. Этому будет способствовать планирование, проведенное, например, по форме табл. 4.17, которая отвечает на вопросы кто? когда? где? сколько? Эффективность всей работы будет также зависеть от информации, которую получит персонал предприятия. Информация должна вызывать положительное отношение персонала к принимаемым мерам.

Таблица 4.16. Вариант представления результатов причинно-следственного анализа в примере с тягачом

Причины несчастного случая

Возможные предупредительные мероприятия

Источники опасностей

Двор с уклоном

Невыключенный тормоз, работающий двигатель

Разная высота прицепа и тягача

Тягач, вышедший из строя

Реконструкция двора

Инструктаж водителя

Стандартизация соединений

Предупредительный ремонт транспортных средств

Неподходящие места стоянок

Недостаточная подготовка работников

Техническая несовместимость материалов

Поломка оборудования

Количественный анализ опасностей.

Функция опасности для системы ЧМС.При анализе опасностей сложные системы разбивают на множество подсистем. Подсистемой называют часть системы, которую выделяют по определенному признаку, отвечающему конкретным целям и задачам функционирования системы (например, подсистема управления безопасностью труда). В рамках этих задач подсистема может рассматриваться как самостоятельная система. Таким образом, иерархическая структура сложной системы такая, что позволяет ее разбивать на подсистемы различных уровней, причем подсистемы низших уровней входят составными частями в подсистемы высших уровней. Подсистемы, в свою очередь, состоят из компонентов – частей системы, которые рассматриваются без дальнейшего членения, как единое целое.

Систему ЧМС, состоящую из компонентов Q1,Q2…Qn(будем обозначать в виде вектора системыQ= (Q1,Q2,...Qn). Отклонение компонентаQiот нормального функционирования (отказ, авария) есть чепеEi.ЧепеEi (i= 1,п)ведут к ненормальному функционированию системыQ, составляющему суть чепеЕ.Логический анализ внутренней структуры системы ЧМС и определение вероятности чепеЕкак функции отдельных чепеEiявляются одной из задач анализа опасностей. Чтобы определить эту функцию, введем индикаторы чепе ξ иξi,i= 1,n, которые могут принимать только два значения 1 и 0. Будем полагать, что если чепеVEi, относящееся к компонентуQi,произошло, то ξi= 1, а если не произошло, то ξi= 0, т. е. произошло чепе Д. Тогда для системыQнаступление чепеЕсоответствует ξ = 1, а наступление чепеЕозначает ξ= 0. Иначе говоря, имеем вектор индикаторов чепе

и следующие соотношения:

Если чепе Eiнаступает с вероятностьюpi,то, как следует из соотношений (4.21), с этой же вероятностью индикатор чепе ξiпринимает значение 1. Поэтому справедливы следующие зависимости:

Логический анализ (§4.1) функционирования системы ЧМС позволяет записать логическую и индикаторную функции системы:

Применяя правила теории вероятностей, находят вероятность чепе в виде так называемой функции опасности

Таким образом, состояние системы ЧМС описывается: вектором системы Q= (Q1,Q2...,Qn), вектором индикаторов чепе ξ = (ξ12,..., ξn), логической функцией системы Е=f[E1,E2, ...,En), индикаторной функцией системы ξ =Fξ1, ξ2, …ξn), функцией опасности р=Fp(p1, р2, ..., рn).

На практике часто индикатор и событие обозначают одной и той же буквой, так как это делалось в предыдущих параграфах.

Предположим, что анализ опасностей проводится для таких пространственно крупных систем, как цех или завод. Тогда в большинстве случаев выявленные источники опасностей могут рассматриваться как точечные. Их местоположение можно задать с помощью системы координат. Кроме того, можно допустить, что опасность достаточно полно характеризуется значениями вероятностей чепе. Эти вероятности можно условно называть «зарядами» опасностей. Заряды опасностей можно связать с системой координат, как например, показано на рис. 4.19, и считать, что они создают вокруг себя поле опасности, напряженность которого характеризуется вероятностью наступления н-чепе. Это позволит не только установить границы опасной зоны, но и произвести ее разметку в зависимости от степени опасности.

Подсистемы и чепе ИЛИ, И.Подсистемой ИЛИназывают часть системы ЧМС, компоненты которой соединены последовательно (рис. 4.20). Отказ подсистемы есть чепе ИЛИ. К чепе ИЛИ приводит отказ любого компонента подсистемы.

Будем обозначать отказы теми же буквами, что и компоненты. Если Ej – отказj-го компонента (компонентаEj;), то чепе ИЛИ есть событие:

где т –число компонентов.

В силу логических законов двойственности отсутствие чепе ИЛИ есть событие.

Рис. 4.19. Описание опасности с помощью «зарядов»:Е1 взрыв ресивера; e2 – обрыв троса; Ез – замыкание на корпус

Рис. 4.20. Символическое изображение подсистемы ИЛИ:

а – графический символ; б – развернутая схема

Если отказы компонентов можно рассматривать как взаимно независимые, то соотношения (4.7) и (4.18) позволяют найти вероятность чепе ИЛИ:

Для равновозможных отказов

вероятность чепе ИЛИ

Последнее выражение свидетельствует о высокой вероятности чепе в случае сложных систем. Например, при вероятности отказа компонента p=0,1 подсистема ИЛИ, состоящая из десяти компонентов= 10). имеет вероятность того, что чепе ИЛИ не произойдет, равную (1-0,1)10≈0,35.

Используя разложения в ряд, можно получить полезные выражения, которые упрощают вычисления:

Рис. 4.21. Символическое изображение подсистемы И:

а –графический символ,б–развернутая схема

Рис. 4.22. Символическое представление подсистемы И –ИЛИ

Подсистемой Иназывают ту часть системы ЧМС, компоненты которой соединены параллельно (рис. 4.21). Отказ этой подсистемы есть чепе И.К чепе И приводит отказ всех компонентов подсистемы:

Если отказы компонентов можно считать взаимно независимыми, то вероятность чепе И

К понятию подсистемы И в машиностроении приводит операция резервирования, которую применяют, когда необходимо достичь высокой надежности системы (например, если имеется опасность аварии).

С точки зрения анализа опасностей можно сделать следующие обобщения.

1. Любые действия персонала, операции, устройства, которые с точки зрения безопасности выполняют одни и те же функции в системе ЧМС, могут считаться соединенными параллельно.

2. Любые действия персонала, операции, устройства, каждое из которых необходимо для предотвращения чепе (например, аварии или несчастного случая), должны рассматриваться как соединенные последовательно.

3. Для уменьшения опасности системы ЧМС обычно добавляют резервирование, учитывая при этом затраты.

Приведем примеры. Пусть защитное устройство пилы устраняет 95 %, а инструкция по технике безопасности 98 % несчастных случаев. В определенном смысле это – параллельные мероприятия (компоненты) по решению одной и той же проблемы. Следовательно, если они независимы, результирующая вероятность несчастного случая находится как для подсистемы И и будет равна 0,001.

Аналогично, если возгорание может произойти как от неосмотрительного курения, так и вследствие электростатического разряда, то предотвращение этих двух причин надо рассматривать как последовательные компоненты.

Подсистемой И–ИЛИназывают ту часть системы ЧМС, которая соединяет подсистемы ИЛИ в подсистему И. Отказ подсистемы И – ИЛИ естьчепе И–ИЛИ.На рис. 4.22 параллельно соединенные компонентыEi(i=1, 2, ...,т),образующие подсистему И, представляют собой подсистемы ИЛИ, состоящие из последовательно соединенных компонентовЕij(j= 1,2, ...,ni).

По формуле (4.28) вероятность отказа i-й подсистемы ИЛИ

Учитывая соотношение (4.32), находим вероятность чепе И – ИЛИ:

Подсистемой ИЛИ–Ив системе ЧМС называют подсистемы И, соединенные в подсистему ИЛИ. На рис. 4.23 последовательно соединенные компонентыEi(i=1,2, ...,m), образующие подсистему ИЛИ, представляют собой подсистемы И из параллельно соединенных компонентовEij(j=1,2, ...,ni).

С учетом формулы (4.32) вероятность отказа i-й подсистемы И

Используя соотношение (4.28), находим вероятность чепе ИЛИ–И

В более сложных случаях, чтобы воспользоваться формулами (4.3) и (4.18) теории вероятностей, логическую функцию (4.23) необходимо определенным образом преобразовать –привести ее к нормальной, а затем к совершенной нормальной форме. Тогда она будет включать несовместимые события.

Численный анализ риска.Рискв широком смысле слова – это подвергание воздействию вероятности экономического или финансового проигрыша, физического повреждения или причинения вреда в какой-либо форме из-за наличия неопределенности, связанной с желанием осуществить определенный вид действий.

Ниже рассмотрен анализ риска при техногенном воздействии. Следует различать риск при наличии источника опасности и риск при наличии источника, оказывающего вредное воздействие на здоровье. Как определено выше, источник опасности потенциально обладает повреждающими факторами, которые воздействуют на организм, собственность или окружающую среду в течение относительно короткого отрезка времени. Что касается источника, характеризующегося вредными факторами, то принято считать, что он воздействует на объект в течение достаточно длительного времени.

Для оценки риска используют различные математические формулировки, выбор которых зависит от имеющейся информации.

Когда последствия неизвестны, то под риском обычно понимают просто вероятность наступления определенного сочетания нежелательный событий:

При необходимости можно использовать определение риска как вероятности превышения предела:

где ξ –случайная величина; х–некоторое значение.

Риск, связанный с техникой, обычно оценивают по формуле, включающей как вероятность чепе, так и величину последствий U (обычно ущерб):

Если каждому i-му чепе, происходящему с вероятностьюPi, может быть поставлен в соответствие ущербUi,то величина риска будет представлять собой ожидаемую величину ущербаU*:

Если все вероятности наступления чепе одинаковы (Pi=p,i=1n), то из формулы (4.40) следует

Если последствия измерять числом летальных исходов (или) и известна вероятность PNNлетальных исходов, то риск

где qположительное число. Если предположить, что одно чепе с большим числом летальных исходов более нежелательно, чем такое же число отдельных летальных исходов, в выражений (4.42) числоqдолжно быть больше единицы.

При угрозе собственности ущерб и риск чаще всего измеряют в денежном выражении. Однако если можно принять, что ущерб при авариях будет одним и тем же, то определение рисков и дальнейшее их сравнение можно проводить, пользуясь вероятностями. В частности, если ущерб трудно рассчитать, то за величину риска принимают вероятность превышения предела [формула (4.38)].

Рис. 4.24. Риск и его оценка

При угрозе здоровью ущерб в денежном выражении можно оценить только частично в виде расходов на оплату листков нетрудоспособности и подмену персонала. Еще труднее в денежном виде оценить ущерб от летальных исходов. Поэтому риск, связанный с несчастными случаями, оценивают вероятностями. Таким образом, единицы измерения риска могут быть различными в том случае, когда существует угроза здоровью, и тогда, когда существует угроза собственности. Поэтому, когда одновременно существует угроза здоровью и собственности, риск целесообразно записывать в векторном виде с различными единицами измерения по координатным осям:

Здесь перемножение в правой части уравнения производится покомпонентно (рис. 4.24), что позволяет сравнивать риски.

Принято различать риск индивидуальный и общий. Индивидуальный рискможно определить как ожидаемое значение ущербаU*причиненного чепе за интервал времениТи отнесенное к группе людей численностьюМчеловек. (Численность людей должна быть указана, если делается ссылка на индивидуальный риск.)

Общий рискдля группы людей (коллективный риск)

Рис. 4.25. Частота и число связанных с техникой несчастных случаев:

1 – суммарная кривая; 2 – общее число аварий самолетов; 3–пожары; 4–взрывы; 5–прорывы плотин; 6–выбросы вредных химических веществ; 7– аварии самолетов (без пассажиров); 8– 100 атомных реакторов

Рис. 4.26. Частота и число природных катастрофических событий:

1–суммарная кривая; 2–-смерчи; 3– ураганы; 4–землетрясения; 5–падение метеоритов

Каждый человек почти всегда подвергается в различных ситуациях определенному риску. Ниже приведены некоторые значения риска смертности.

Риск, ли (чел.-год)

Курение (пачка в день) ................ 3,6·10-3

Рак (все виды) ..................... 2,8·10-3

Загрязнение атмосферы ................ 1,1·10-4

Алкоголь (малые дозы) ................ 2,0·10-5

Фоновая радиация (на уровне моря, без учета радона) . 2,0·10-5

На рис. 4.25 и 4.26 показана связь между частотой и числом несчастных случаев с летальным исходом. Видно, что частота и величина риска, обусловленного природными катаклизмами, обычно существенно превосходят угрозы, сопутствующие эксплуатации техники. На рис. 4.27 сопоставлены экономические последствия (ущерб), наносимые природными катаклизмами и техническими катастрофами.

При определении социально приемлемого риска обычно используют данные о естественной смертности людей, которая в индустриально развитых странах практически одинакова и изменяется с течением времени, отражая научно-технический прогресс. Однако риск естественной смерти зависит от возрастной группы людей: в возрасте 5...15 лет он имеет минимум и равен 2·10-4случаев/(чел.* год), при этом на каждый такой случай приходится 20 несчастных случаев постоянной нетрудоспособности (нcпн) и 200 несчастных случаев временной нетрудоспособности (нс вн).

Поэтому имеет смысл ввести реперное значение абсолютного риска

Rа= 10-4ли/(чел.*год). (4.46)

При определении реперного значения допустимого риска/^д при наличии отдельного источника опасности (технической установки) следует иметь в виду, что человеку обычно угрожает несколько источников опасности и, следовательно, должно выполняться неравенство:Rд <Rа. Обычно в качестве реперного значения допустимого риска при наличии отдельно взятого источника опасности берут

10-3ли/(чел.*год)

R={10-4ли нс пн/(чел.*год) (4.47)

10-3нс вн/(чел.*год).

Условие безопасности для населения можно сформулировать следующим образом: величина дополнительного риска, вызванного техническими причинами, для подавляющего большинства людей не должна превосходить реперное значение абсолютного риска Ra (рис. 4.28):

RRА.(4.48)

Рис. 4.28 показывает, как велика доля тех людей, для которых среднегодовые значения риска вследствие присутствия технического фактора выше значения Ra. Среднегодовое значение риска для конкретного человека зависит от источников опасностей и времени их воздействия.

Рассматривая отдельно взятый источник опасности и учитывая, что индивидуальный риск обычно зависит от расстояния R=R(r), условие безопасностидля всехrможно записать в виде

R(r)≤Rд. (4.49)

Однако это неравенство нуждается в корректировке, когда последствия чепе могут быть весьма значительными. Как следует из рис. 4.25 (кривая I), имеет смысл считать приемлемым критерием максимального числа летальных исходов в год значениеNо = 100. Если при определенных условиях можно ожидать число летальных исходовN > No,то значение допустимого риска следует уменьшить пропорционально отношениюNo/N (рис. 4.29), так что условие безопасности будет иметь вид

При заданном источнике анализ опасностей будет включать идентификацию потенциальных чепе, численную оценку риска и этап управления риском. Оценку и управление риском можно проводить в следующем порядке.

Пусть плотность людей на единицу площади рабочей зоны определена как функция р (г). Тогда общий риск применительно к отдельному источнику

(4.51)

При наличии писточников опасности для нахождения индивидуального риска можно использовать принцип суперпозиции

(4.52)

где Ri,(r) – индивидуальный риск приi-м источнике опасности.

Один и тот же объект может быть источником разных опасностей. Например, при транспортировании топлива между пунктами АиВможно выделить поле опасности, связанное с токсичностью топлива, и поле опасности, связанное с горючестью топлива, которые в общем случае различны.

Рис. 4.29. Зависимость допустимого риска от ожидаемого числа летальных исходов:

1 – наинизшее значение естественной смертности

Рис. 4.30. Зависимость риска от расходов на защиту

Далее проверяют выполнение неравенства (4.50). В дополнение к этому неравенству, которое ограничивает индивидуальный риск, следует удовлетворить также условию, вовлекающему в рассмотрение коллективный риск:

При принятии решений следует иметь в виду, что для ряда источников невозможно достичь уровня «нулевой» опасности. На рис. 4.30 кривая 1 соответствует случаю, когда можно достичь абсолютной безопасности, или нулевой опасности. В этом случае при расходах на защиту при необходимом конечном значении Х=Xо рискRстановится равным нулю. Кривая2соответствует случаю, когда достичь абсолютной безопасности принципиально невозможно. Такое поведение эффективности затрат на защиту характерно, например для радиационно опасных производств, транспорта, промышленных предприятий. Если придерживаться принципа абсолютной безопасности, то необходимо применить все меры защиты, которые практически можно осуществить. Однако при этом помимо прямого рискаRnp,создаваемого данной технологией, и на уменьшение которого направлены усилия (меры безопасности), существует еще и косвенный рискRкс. Он обусловлен, например строительными работами, изготовлением оборудования и материалов для защитных сооружений, их эксплуатацией и т. д. С ростом расходовXна безопасность рискRпр уменьшается, а рискRкс растет. Уменьшается также эффективность затрат на защиту. Начиная с некоторого уровня этих расходов, при дальнейшем ростеХбудет происходить возрастание полного рискаRn=Rnp+Rкс. Поэтому при наличии источников, которые не позволяют достичь уровня нулевой опасности, следует принимать вариант решения с оптимизацией риска.

Для выполнения условий безопасности может потребоваться внесение изменений в следующие компоненты, управляющие риском: конструкторские решения; аварийные методики; учебные, тренировочные программы, программы по переподготовке; руководство по эксплуатации; нормативные документы; программы по безопасности.

Анализ риска, обусловленного наличием источника вредного действия, состоит из этапа оценки риска, сопровождаемого исследованиями, и этапа управления риском (рис. 4.31). На этапе оценки устанавливают, какие последствия вызывают разные дозы и в разных условиях в данном коллективе. На этапе управления риском анализируют разные альтернативы и выбирают наиболее подходящие управляющие воздействия. С целью принятия окончательного решения результаты оценки риска рассматривают с учетом инженерных, экономических и политических аспектов.

Рис. 4.31. Схема анализа риска, обусловленного источником, воздействующим на здоровье

Стандартные показатели несчастных случаев.Показатели несчастных случаев являются некоторой мерой опасности, позволяющей сопоставлять между собой предприятия, отрасли, профессии, возрастные группы и т. д. Они учитывают объем выполненной работы, ее минимальную длительность, при которой они являются достоверными, требуют применения единых методов учета данных и разрешают проводить сравнение лишь при определенных условиях (например, по профессиям). К таким показателям относят коэффициенты и показатели частоты и тяжести несчастных случаев.

Коэффициент частоты несчастных случаевесть отношение числа наступивших несчастных случаевNк реперному числу несчастных случаевN*, определенному за тот же период времени:

K4=N/N*.(4.54)

Реперное число

где αt= 10-6нс/ч и αм= 10-3нс/чел. можно трактовать как реперные значения соответственно скорости и плотности наступления несчастных случаев;Т–число часов, отработанных за рассматриваемый период времени всеми рабочими, которые подвергались воздействию опасности;М–среднее число рабочих, подверженных опасности.

В нашей стране принято определять реперное число по формуле N* = αмM,в западных развитых странахN* = αtТ,подсчитанные таким образом коэффициентыК4имеют различные значения; расчет реперного числа по формулеN= αТТ позволяет более полно учесть объем выполненной работы.

Если устанавливается годовое значение К4,то

T=MXY-Z,

где М–численность работающих;X, YиZ–соответственно длительность рабочего дня, число отработанных в году дней и потери рабочего времени вследствие отпусков, прогулов, болезни, несчастных случаев и т д.

Например, если на предприятии в течение года (допустим, в году 300 рабочих дней) работало 950 человек (рабочий день ранен 8 ч), за это время наступило 100 несчастных случаев и было потеряно по разным причинам 30 000 рабочих дней, то - Т = 950∙300∙8–30000∙8 = 2 040 000 ч, N.=10-6·2 040 000 == 2,04 нc,К4= 100/2,04 = 49,02.

Показатель тяжести несчастных случаев(коэффициент нетрудоспособности)

Kн=Д/д*, (4.55)

где Д–число всех дней нетрудоспособности; Д*=βтТ–реперное число нетрудоспособных дней; Ву= 10-3дн/ч.

Допустим, что при условиях, изложенных в предыдущем примере, 100 несчастных случаев привели к потере 3000 рабочих дней. Тогда, реперное число Д*=10-3(950·300x х8–30 000-8) == 2040 дней,Кн= 3000/2040 = 1,47

Коэффициент тяжести несчастных случаевопределяется как число всех дней нетрудоспособности, приходящееся на один несчастный случай:

Кт=Д/Т

При расчетах характеристик несчастных случаев (4.54)...(4.56) возникает вопрос: как быть, если среди несчастных случаев были такие, которые привели к летальному исходу или полной потере трудоспособности? Ответ на этот вопрос пытаются дать путем установления эквивалента, который бы приводил летальный исход к числу нетрудоспособных дней. Ориентировочно и неофициально полагают, что один летальный исход может быть приравнен к 6000–7500 дням потери работоспособности Так, если в предыдущем примере к 100 несчастным случаям добавим один летальный исход, получим Кн(6000 + 3000)/2040 =4,41, т.е. показатель тяжести увеличится в 3 раза, а коэффициент частоты незначительно (станет равным 50,25). Однако в настоящее время показатели несчастных случаев обычно рассчитывают отдельно для летальных и нелетальных исходов.

Коэффициент частоты несчастных случаев с летальным исходом [ли/чел∙4)]:

Кл=Nл/(МТ)

где Nлчисло летальных исходов, обычно полагаютМТ=108чел *ч, что соответствует расчетному времени, когда 1000 человек работают по 40 ч в неделю в течение 50 недель в году и в течение 50 лет. Значения коэффициентаКлприведены ниже.

Кл,ли/(чел*4)

Горные работы 30·10-8

Транспорт 30·10-8

Строительство 20·10-8

Добыча нерудных полезных ископаемых 10·10-8

Эксплуатация газопроводного оборудования и гидротехнических сооружений 6·10-8

Металлургическая промышленность 6·10-8

Деревообделочные работы 6·10-8

Пищевая промышленность 6·10-8

Цсллюлозно-бумажная и полиграфическая промышленность 5·10-8

Электротехника, точная механика, оптика 4·10-8

Работы, связанные с химическими веществами 4·10-8

Торговля, финансы, страхование, коммунальные услуги 4·10-8

Текстильная и кожевенно-обувная промышленность 3·10-8

Здравоохранение___________________________ 2·10-8

Среднее значение для 20,2 млн застрахованных 7·10-8

Анализ последствий ЧС.

Оценка опасности становится полной лишь тогда, когда последствия потенциального чепе ясно представляются. Прежде чем планировать предупредительные мероприятия, необходимо знать, какое потенциальное повреждающее действие окажет данное чепе на персонал, население, материальные ценности и окружающую среду. Поэтому анализ последствий чепе (АПЧ) может включать следующее:

– описание потенциальных чепе;

– оценку их вероятностей;

– количественную оценку возможных последствий, например, проливов и выбросов, обладающих повреждающими свойствами (токсичностью, взрываемостью и т д);

– расчет рассеивания выбросов и испарение проливов;

– оценку других повреждающих факторов (радиации, ударной волны, излучений и т. д);

– суммарную оценку ущерба.

Риск– количественная характеристика действия опасностей, формируемых конкретной деятельностью человека, т.е. число смертельных случаев, число случаев заболевания, число случаев временной и стойкой нетрудоспособности (инвалидности), вызванных действием на человека конкретной опасности (электрический ток, вредное вещество, двигающийся предмет, криминальные элементы общества и др.), отнесенных на определенное количество жителей (работников) за конкретный период времени. Значение риска от конкретной опасности можно получить из статистики несчастных случаев, случаев заболевания, случаев насильственных действий на членов общества за различные промежутки времени: смена, сутки, неделя, квартал, год. Риск в настоящее время все чаще используется для оценки воздействия негативных факторов производства. Это связанно с тем, что риск как количественную характеристику реализации опасностей можно использовать для оценки состояний условий труда, экономического ущерба, определяемого несчастным случаем и заболеваниями на производстве, формировать систему социальной политики на производстве (обеспечение компенсаций, льгот).

Опасности могут быть реализованы в форме травм или заболеваний только в том случае, если зона формирования опасностей) пересекается с зоной деятельности человека В производственных условиях – эта рабочая зона и источник опасности (один из элементов производственной среды).

В производственных условиях различают индивидуальный и коллективный риск. Индивидуальный рискхарактеризует реализацию опасности определенного вида деятельности для конкретного индивидуума. Используемые в нашей стране показатели производственного травматизма и профессиональной заболеваемости, такие, как частота несчастных случаев и профессиональных заболеваний, являются выражением индивидуального производственного риска.

Коллективный риск – это травмирование или гибель двух и более человек от воздействия опасных и вредных производственных факторов.

Классификация источников опасности и уровни риска смерти человека, взятые из литературных источников, представлены в следующей таблице.

Использование риска в качестве единого индекса вреда при оценке действия различных негативных факторов на человека начинает в настоящее время применяться для обоснованного сравнения безопасности различных отраслей экономики и типов работ, аргументации социальных преимуществ и льгот для определенной категории лиц.

Достижение некоторого приемлемого индекса вреда риска является, по мнению специалистов в области безопасности труда, не только оценкой безопасности в какой- то одной отрасли промышленности, но и для оценки изменения этого уровня безопасности со временем и при различных условиях труда. Это также важно для количественного установления диапазона риска по всей промышленности в целом так, чтобы безопасность пределов воздействия различных производственных факторов могла быть должным образом оценена в части перспективы профессионального риска вообще, его изменения и сокращения. Ожидаемый (прогнозируемый) риск R – это произведение частоты реализации конкретной опасности f на произведение вероятностей нахождения человека в зоне риска.

При различном регламенте технического процесса. Эту величину полезно использовать в практической работе предприятия в производственной деятельности.

Использование данной формулы для оценки вероятности производственного риска удобно тем, что, основываясь на имеющихся на производстве данных о частоте несчастных случаев (подлежат обязательному хранению), можно прогнозировать величину возможного риска, так как регламент технологических процессов дает четкие сведения о времени взаимодействия человека с производственными опасностями в течении рабочего дня, недели, года, т.е. позволяет определить вероятность нахождения работника в «зоне риска». Такой прогноз очень полезен при формировании мероприятий по улучшению условий труда на производстве, так как использование формулы позволяет определять величины рисков воздействия различных негативны факторов для конкретного технологического процесса производства, проводить оценку значимости каждого фактора с позиции безопасности, что и является основой формирования мероприятий по улучшению условий труда.

Допустимый риск.Это такой низкий уровень смертности, травматизма или инвалидности людей, который не влияет на экономические показатели предприятия, отрасли экономики или государства.

Необходимость формирования концепции приемлемого (допустимого) риска обусловлена невозможностью создания абсолютно безопасной деятельности (технологического процесса). Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты и представляет некоторый компромисс между уровнем безопасности и возможностями ее достижения.

Экономические возможности повышения безопасности технических систем не безграничны. Так, на производстве, затрачивая чрезмерные средства на повышение безопасности технических систем, можно нанести ущерб социальной сфере производства (сокращение затрат на приобретение спецодежды, медицинское обслуживание и другое).

При увеличении затрат на совершенствование оборудования технический риск снижается, но растет социальный. Суммарный риск имеет минимум при определенном соотношении между инвестициями и техническую и социальную сферу. Это обстоятельство надо учитывать при выборе приемлемого риска. Подход к оценке приемлемого риска очень широк.

В настоящее время по международной договоренности принято считать, что действие техногенных опасностей (технический риск) должно находиться в пределах от 10-7– 10-6(смертельных случаев чел-1*год-1), а величина 10-6является максимально приемлемым уровнем индивидуального риска. В национальных правилах эта величина используется для оценки пожарной безопасности и радиационной безопасности.

Мотивированный (обоснованный) и немотивированный (необоснованный) риск. В случае производственных аварий, пожаров, в целях спасения людей, пострадавших от аварий и пожаров, человеку приходится идти на риск. Обоснованность такого риска определяется необходимостью оказания помощи