logo search
ТОМ 1

3.7.1.2. Управление рисками и прогноз редких катастрофических событий

Да, человек смертен, но это было бы еще полбеды. Плохо то, что он иногда внезапно смертен, вот в чем фокус!

М.А. Булгаков. "Мастер и Маргарита"

Сейчас в области научных исследований, связанных с прогнозом, в центре внимания находятся описание и предсказание редких катастрофических событий. В свое время один из создателей современной химии Вант-Гофф говорил: "Я убрал из своих трудов все то, что трудно наблюдать, и то, что происходит достаточно редко". Возможности, которые дают нам сегодня информационные технологии, позволяют обратиться к анализу и прогнозу редких катастрофических событий.

Приведем пример, показывающий, что самые разные катастрофические события могут развиваться по одним законам. На рис. 3.7.4 показаны графики поведения характеристик, описывающих две сложно организованные иерархические системы – фондовый рынок и тектонический разлом – незадолго перед катастрофой.

Как видим, в обоих случаях, у нас есть быстрый катастрофический рост, на который накладываются ускоряющиеся колебания. Сглаженная кривая отлично описывается формулой

,

Т.е. мы имеем одно и то же решение уравнений, которых пока не знаем. Следует обратить внимание на то, что асимптотикой таких процессов перед катастрофой является так называемый режим с обострением (когда одна или несколько величин, характеризующих систему, за конечное время вырастают до бесконечности). Этот класс режимов в течение более 30‑ти лет исследуется в научной школе, сложившейся в Институте прикладной математики им. М.В. Келдыша РАН, под руководством одного из авторов этого сообщения. Последняя книжка на эту тему "Режимы с обострением. Эволюция идеи" вышла в прошлом году в издательстве "Наука"

В свое время Джон фон Нейман говорил: «Я не верю, что можно найти общие закономерности в поведении сложных систем. Это то же самое, что построить теорию не слонов».

Рис. 3.7.4 Характерный вид зависимости, возникающей перед катастрофами в сложных системах

Слева – зависимость логарифма индекса Доу-Джонса (этот индекс определяется ценой самого эффективного пакета акций 30‑ти ведущих компаний Соединенных Штатов) от времени перед Великой депрессией с 1921 по 1930 год. Точки – это точные данные, а сплошная кривая – сглаженная зависимость, простроенная по ним.

Справа – зависимость логарифма концентрации ионов хлора в родниках перед катастрофическим землетрясением в Кобе в 1995 году от времени (указано в годах).

Развитие нелинейной динамики опровергло это утверждение. Нелинейная динамика позволила установить универсальные сценарии возникновения хаоса из упорядоченного состояния. То, что происходит сейчас в науке, показывает, что в ряде случаев можно говорить и о неких универсальных сценариях возникновения катастроф.

Лет тридцать назад Ричарда Фейнмана спросили: "Если бы завтра все живущие ныне физики погибли, и от всех них в будущее можно было бы передать только одну фразу, что бы Вы сказали?" "Весь мир состоит из атомов и пустоты, – ответил Фейнман. – Остальное они додумают".

Если бы такой же вопрос сейчас был задан всем ученым, а не только физикам, вероятно, фраза должна была бы быть иной: "Научитесь управлять рисками". Управление рисками – одна из важнейших технологий нашей цивилизации. Она соответствует магистральному пути прогресса – менять одни угрозы и опасности на другие. Например, опасность голодать и мерзнуть – на риск пожинать плоды заражения воды, земли, воздуха, связанные с работой тепловых или атомных станций.

Не надо думать, что здесь "иного не дано", что здесь можно только плыть по течению. Иное дано. Швеция приняла решение отказаться от атомной энергетики как от слишком опасной технологии. В то же время во Франции, где более 70 процентов электроэнергии производится на АЭС, правительство рассматривает форсированное развитие этой отрасли как важнейший способ сохранения окружающей среды. Цена вопроса весьма высока, и свобода маневра достаточно велика.

Глубокая связь между идеями нелинейной динамики и управлением рисками стала ясна недавно. Осознать ее помогла парадоксальная статистика аварий. Вспомним "Титаник", "Челленджер", Чернобыль, Тримайл, Бхопал… Каждая из этих крупнейших катастроф XX века связана с длинной цепью причинно-следственных связей, с "неблагоприятным стечением многих маловероятных случайных обстоятельств", как часто пишут в актах государственных комиссий. И в самом деле, вздумай злоумышленник специально сделать что-то подобное, ему пришлось бы трудно. При знакомстве с бедствиями не оставляет чувство, что нам просто очень не везет.

Что же является математическим образом этого "невезения"? Выше уже звучало слово "случайность". В начале прошлого века Карл Гаусс установил, что сумма независимых, одинаково распределенных случайных величин подчиняется вполне определенному закону. Соответствующая ему кривая, получающаяся после нормировки, показана на рис. 3.7.5 Видно, что она очень быстро убывает, большие отклонения, в соответствии с этим законом, очень редки. Настолько редки, что ими можно пренебречь.

Рис. 3.7.5 Типичный вид нормального и степенного распределений

Классическим, привычным является гауссово распределение (жирная линия). В соответствии с ним, большие отклонения настолько редки, что ими можно пренебречь. Однако многие бедствия, аварии, катастрофы порождают статистику со степенным распределением (тонкая линия). В этом случае редкими катастрофическими событиями пренебречь нельзя.

На правом рисунке графики тех же распределений представлены в логарифмическом масштабе, при котором степенные зависимости приобретают вид прямых линий.

Гауссово распределение лежит в основе множества инженерных расчетов и технических норм. Все инженеры знают, что есть "правило трех сигм". Это правило говорит о том, что вероятность отклонения случайной величины от среднего значения более, чем на три "сигмы" составляет менее 0,001 (см. рис. 3.7.5.). "Сигма" здесь – среднеквадратичное отклонение.

Простой пример: по этому закону распределен рост людей. Поэтому вероятностью встречи с трехметровым гигантом с легким сердцем можно пренебречь.

Но есть и другой класс законов, которые называют степенными (тонкая кривая на том же рисунке). Здесь "хвост" убывает гораздо медленнее, поэтому такие законы часто называют "распределениями с тяжелыми хвостами". В этом случае большими отклонениями пренебречь нельзя. Если бы по такому закону был распределен рост, то это был бы уже мир восточных сказок с тридцатиметровыми джиннами, ифритами, дэвами, которые вполне могли встретиться в жизни простых смертных.

Именно в мире восточных сказок мы обычно и оказываемся, сталкиваясь с бедствиями, катастрофами, авариями. Такова статистика землетрясений, наводнений, ураганов, инцидентов с хранением ядерного оружия, биржевых крахов, ущерба от утечки конфиденциальной информации, многих других невзгод.

Рис. 3.7.6 Распределение бедствий по количества погибших в их результате в США в XX веке

По оси абсцисс отложена фатальность F стихийного бедствия, измеряемая логарифмом числа погибших в его результате. Логарифм числа бедствий (log N), имеющих фатальность не меньше данной отложен по оси ординат. Идеальным степенным законам соответствуют прямые. Видно, что эти законы являются хорошим приближением для реальной статистики бедствий и катастроф.

Приведены данные для торнадо (ромбы), наводнений (квадратики), ураганов (кружки), землетрясений (треугольники).

Чтобы не быть голословным, приведем американскую статистику за последний век (рис. 3.7.6). По оси абсцисс отложено число жертв, а по ординате число событий, в которых число жертв было больше заданной величины. Здесь представлены торнадо, землетрясения, наводнения, ураганы. Идеальной степенной статистике соответствовала бы прямая. Видим, что экспериментальные данные с достаточно хорошей точностью ложатся на прямые.

Почему это жизненно важно? Когда мы определяем, браться ли нам за какой-то технический проект или не браться, то есть несколько подходов. Первый подход был реализован и доведен до совершенства еще во времена Колумба.

Мы считаем все возможные исходы N, берем их вероятности pi, умножаем на соответствующие выигрыши или проигрыши xi и суммируем

И в зависимости от того, какая величина получится, мы беремся за этот проект или не беремся.

Следует отметить, что единственной экспедицией, которая пошла за государственный счет в Новый Свет, была экспедиция Колумба. А после этого в Испании торговые дома начали заниматься страхованием и перестрахованием таких проектов, потому что финансовый риск для отдельного торгового дома был слишком велик. Но зато и выигрыш был очень велик.

Исторический анекдот: Френсис Дрейк после своей экспедиции в Новый Свет преподнес английской королеве подарок, который равнялся двум годовым бюджетам Англии. И королева расплатилась со всеми долгами.

Итак, в нашем мире действительно есть много очень опасных, но очень выгодных проектов. И на этой основе, заложенной еще во времена Колумба, до 50-х годов оценивались очень многие технические инициативы.

Однако еще в XVIII веке был замечен следующий парадокс. Представим такую игру: мы бросаем монетку – выпадает орел или решка. Если выпал орел, Вы получаете два золотых дуката и игра кончается. Если он выпал во второй раз, Вы получаете четыре золотых дуката и игра кончается. Если третий раз, – восемь. При этом сумма S1, которая входит в "колумбов алгоритм" бесконечна.

Спрашивается, сколько можно заплатить за право войти в такую игру? Бернулли, который был в Санкт-Петербурге и наблюдал за такой игрой, был поражен тем, что люди готовы платить за это не более 20 дукатов.

Когда человек оценивает вероятность и решает, следует ли рисковать, то, по мнению Бернулли, он действует не по "колумбову алгоритму". Он оценивает не реальный выигрыш, а полезность выигрыша

,

где U(xi) – функция полезности. Если у Вас есть рубль, то 100 рублей для Вас – огромный выигрыш. А если у Вас есть тысяча рублей, то 100 рублей Вы цените гораздо меньше, его "полезность" для Вас гораздо меньше. В середине ХХ века Джон фон Нейман показал, что в экономическом поведении для массы ситуаций "бернуллиевский алгоритм" хорош.

Однако дальнейшие исследования экономического поведения, в частности, работы Алена и его школы, показали, что алгоритм принятия решений у людей во многих ситуациях иной, более сложный. Человек имеет дело не с формулой Бернулли, а с формулой, где есть не только функция полезности, но и субъективные вероятности, отражающие наши представления об опасности

,

Рис. 3.7.7 Типичная схема оценки аварий

В случае "гауссовых бедствий" выделяют проектные, запроектные и гипотетические аварии. Вероятность первых определяется площадью криволинейной трапеции ABEF, запроектных – BCDE, гипотетических – площадью участка под кривой, лежащим справа от линии DC. Для наглядности площади, соответствующие запроектным и гипотетическим авариям, на рисунке значительно увеличены.

где f(pi) – субъективные вероятности. Они отражают наше мнение о том, насколько вероятно то или иное событие. Психологи утверждают, что если человеку сообщают, что риск меньше 10‑6 год1, то он просто игнорирует эту возможность.

То есть для того, чтобы анализировать какие-то проекты, мы должны иметь некую систему оценок. В 50‑е годы предполагалось, что люди, если им регулярно платят зарплату и они имеют достаточную квалификацию, способны обеспечить абсолютную безопасность работы любого объекта. Но благодаря Государственной научно-технической программе "Безопасность", усилиям член-корр. РАН Н.А. Махутова, удалось показать, что здесь разумнее действовать так, как действуют во всем мире, а именно, так, как показано на рис. 3.7.7.

Итак: у нас есть проектные аварии (и для них есть некая вероятность). А раз они проектные, то компания должна их устранять сама. У нас есть запроектные аварии со своими вероятностями – их последствия должны ликвидировать МЧС, соответствующие органы, которые могут это делать. И есть еще гипотетические аварии, вероятностью которых, как еще недавно считали, можно пренебрегать.

Исходя из этой картинки, проектировалось очень многое, начиная с систем вооружений и кончая атомными станциями. Оказалось, что предположение о гауссовой статистике, собственно, и приводит к заключению о том, что возможность вероятности аварии на атомной станции 107 год1, т.е. одна авария за 10 миллионов лет. Однако, как показали проведенные в последние годы исследования, во всех этих случаях мы имеем дело со степенной статистикой. Поэтому оценки должны быть совершенно другие.

Рис. 3.7.8 Типичная картина при возникновении жесткой турбулентности

На "хаотическом фоне" изредка возникают гигантские пики.

Защищаться от "степенных катастроф" нужно совсем иначе, чем от обычных "гауссовых аварий". Среди последних можно выделить проектные (иногда возникающие), запроектные (которые бывают совсем редко) и гипотетические аварии (настолько редкие, что ими обычно пренебрегают). А в случае "степенных бедствий" надо рассчитывать на худшее. В случае землетрясений нужно не надеяться "на авось", а вести сейсмостойкое строительство. Другой пример: плотины Волжского каскада закрывают водохранилища, содержащие десятки кубических километров воды. Их разрушение может привести к возникновению волны в десяток метров высоты. Это сотни тысяч жизней.

Чтобы представить масштаб редких катастрофических событий, достаточно напомнить несколько эпизодов из истории XX века. При наводнении 1931 года на реке Янцзы в Китае погибло 1,3 млн. человек, при Тянь-Шанском землетрясении в 1976 году – около 650 тысяч. Наводнение в Бангладеш в 1970 году унесло более 500 тысяч жизней и оставило без крова 28 млн. человек

Рис. 3.7.9 Изменение медленных переменных перед гигантскими пиками

Наиболее важна с точки зрения предупреждения катастрофических событий переменная M(t).

В управлении риском основное и наиболее важное связано не только с описанием, со статистикой, с пониманием механизмов. Главное связано с тем, что в ряде случаев можно определить предвестники. Пример такого поведения дает интересное явление, которое называется жесткой турбулентностью. В 70‑х годах его обнаружили в физике плазмы, а в последнее время в самых разных системах типа "реакция–диффузия". Пусть есть некая величина, которая меняется в хаотическом режиме, но иногда совершает гигантские скачки (см. рис. 3.7.8). И вот для таких модельных задач удается выявить предвестники, которые сигнализируют об опасности. Еще ничего не произошло, катастрофа далеко, а некоторая медленно меняющаяся переменная уже говорит о том, что мы вошли в опасную область (рис. 3.7.9).

Сейчас такие вещи ищутся для многих реальных систем.

Ряд усилий, связанных с разработкой и приложением теории управления риском, предпринимается в связи с принятой по инициативе МЧС России Федеральной целевой программой по предупреждению и смягчению последствий чрезвычайных ситуаций в природной и техногенной сфере. В этой программе акцент сделан на прогнозе и предупреждении бедствий и катастроф, поскольку прогноз и предупреждение, с экономической точки зрения, обходятся в десятки, а иногда и в сотни раз дешевле, чем ликвидация последствий уже происшедших бед.

Многие глобальные проблемы проявляются, прежде всего, в росте масштабов и числа чрезвычайных ситуаций. Без перелома этой тенденции не приходится надеяться на выход страны на траекторию устойчивого развития. Для России все это особенно актуально.

Однако масштаб этих работ в стране, на наш взгляд, пока не соответствует их значению. Здесь нужен широкий междисциплинарный подход и гораздо более активное участие Академии наук. Многие вещи здесь должны быть пересмотрены и переоценены.